scholarly journals Description of Isotherms of Two-Component Non-Electrolyte Solution Adsorption onto Solids with Structural Heterogeneity of Adsorbents Taken into Consideration

1988 ◽  
Vol 5 (2) ◽  
pp. 106-115 ◽  
Author(s):  
P. Cysewski ◽  
J.K. Garbacz ◽  
S. Biniak ◽  
A. Swiatkowski ◽  
A. Dabrowski

The concepts of Stoeckli as well as those of Wojsz and Rozwadowski have been adopted for describing adsorption from two-component non-electrolyte liquid mixtures at solid adsorbents taking into account structural heterogeneity of the adsorbent. Some new global adsorption equations have been obtained and verified on the basis of experimental data.

2002 ◽  
Vol 80 (5) ◽  
pp. 467-475 ◽  
Author(s):  
Amalendu Pal ◽  
Rakesh Kumar Bhardwaj

Excess molar volumes (VmE) and dynamic viscosities (η) have been measured as a function of composition for binary liquid mixtures of propylamine with 2,5-dioxahexane, 2,5,8-trioxanonane, 2,5,8,11-tetraoxadodecane, 3,6,9-trioxaundecane, and 5,8,11-trioxapentadecane at 298.15 K. The excess volumes are positive over the entire range of composition for the systems propylamine + 2,5-dioxahexane, and + 3,6,9-trioxaundecane, negative for the systems propylamine + 2,5,8,11-tetraoxadodecane, and + 5,8,11-trioxapentadecane, and change sign from positive to negative for the remaining system propylamine + 2,5,8-trioxanonane. From the experimental data, deviations in the viscosity (Δln η) and excess energies of activation for viscous flow (ΔG*E) have been derived. These values are positive for all mixtures with the exception of propylamine + 2,5-dioxahexane.Key words : excess volume, viscosity, binary mixtures.


2019 ◽  
Vol 21 (42) ◽  
pp. 23305-23309 ◽  
Author(s):  
Andreia S. L. Gouveia ◽  
Carlos E. S. Bernardes ◽  
Elena I. Lozinskaya ◽  
Alexander S. Shaplov ◽  
José N. Canongia Lopes ◽  
...  

Simple mixtures of ionic liquids (IL–IL mixtures) can become a promising approach for the substitution of task-specific ILs.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
M. Fossa ◽  
A. Marchitto

A new approach to the classical slug flow model is here proposed based on an original correlation for the minimum liquid level in the stratified regions of intermittent horizontal flows. This correlation is obtained by fitting experimental data obtained from a statistical analysis of void fraction signals from ring impedance probes. The new procedure improves the original model in terms of computing time reduction and algorithm simplification. In addition, it is demonstrated that the new closure relationship can be derived with more consistent experimental results, with respect to the slug length, which is employed in the original approach. The predictions of the main flow parameters are presented with reference to the classical and new approach, and all the results are critically compared with literature experimental data. It is demonstrated that the simplified procedure is able to predict the pressure drops and average void fraction values in good agreement with experimental measurements, while only the slug frequency and slug length predictions are affected by poor reliability.


The influence of structural heterogeneity, in the form of a non-uniform pore size distribution, on the isotherms and surface diffusion coefficients for monolayer physical adsorption is studied. A pore size dependent langmuirian isotherm is used along with consideration of equality of chemical potentials at the pore mouths at an intersection. The diffusion is modelled by a recently developed random walk formulation. It is found that the surface diffusion coefficients are strongly influenced by the heterogeneity and have a stronger increase with overall coverage than that predicted by the Darken equation. The results are found to match the experimental data of P. C. Carman and F. A. Raal on the diffusion of carbon dioxide in carbon black without the use of a fitting parameter.


Author(s):  
Anthony D. Buckland ◽  
Colin H. Rochester ◽  
Deborah-Anne Trebilco ◽  
Kenneth Wigfield

Author(s):  
D. Chisholm

Equations are developed for the flow of gas-liquid mixtures through nozzles under conditions of critical or ‘choking’ flow. The equations are compared with experimental data obtained during air-water flow through nozzles and pipes at almost atmospheric pressures. Comparison is also made with data on the sonic velocity in mixtures. Additional problems arising with vapour-liquid mixtures are also discussed.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Jacob Eapen ◽  
Roberto Rusconi ◽  
Roberto Piazza ◽  
Sidney Yip

We show that a large set of nanofluid thermal conductivity data falls within the upper and lower Maxwell bounds for homogeneous systems. This indicates that the thermal conductivity of nanofluids is largely dependent on whether the nanoparticles stay dispersed in the base fluid, form large aggregates, or assume a percolating fractal configuration. The experimental data, which are strikingly analogous to those in most solid composites and liquid mixtures, provide strong evidence for the classical nature of thermal conduction in nanofluids.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3052-3056 ◽  
Author(s):  
Liyuan Zhang ◽  
Xiaoqiang Yang ◽  
Changfeng Chen

The pseudogapped metallic state (PS) in high-T c superconductors (HTS) has distinctive characteristics in comparison with the metallic state in tranditional solid state physics. Through careful analyses of experimental data and theoretical calculations, we have correlated the pseudogap in the density of states with the two-component characteristics in the HTS. We propose seven points as a model description for PS.


Sign in / Sign up

Export Citation Format

Share Document