scholarly journals The Adsorption of Europium on to Titanium Oxide from Aqueous Solutions

1994 ◽  
Vol 11 (3) ◽  
pp. 187-191 ◽  
Author(s):  
M.A. Rauf ◽  
S.M. Hasany ◽  
M. Ikram ◽  
A.M. Shamsi

The adsorption of europium on to titanium dioxide from aqueous solution at pH 4 has been studied in relation to the concentration of the adsorbate. The conditions for maximum adsorption were optimized and the effects of added cations, anions and other metal ions studied. The oxide was found to separate europium from TeIV, CoII and MnII in appreciable amounts under the given conditions.

1984 ◽  
Vol 49 (3) ◽  
pp. 559-569 ◽  
Author(s):  
Jaroslav Nývlt

The metastable zone width of an aqueous solution of KCI was measured as a function of the time and temperature of overheating above the equilibrium solubility temperature. It has been found that when the experiments follow close upon one another, the parameters of the preceding experiment affect the results of the experiment to follow.The results are interpreted in terms of hypotheses advanced in the literature to account for the effect of thermal history of solution. The plausibility and applicability of these hypotheses are assessed for the given cause of aqueous solution of a well soluble electrolyte.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Elzbieta Radzyminska-Lenarcik ◽  
Kamila Maslowska ◽  
Wlodzimierz Urbaniak

Polymer inclusion membranes (PIMs) are an attractive approach to the separation of metals from an aqueous solution. This study is concerned with the use of 2-alkylimidazoles (alkyl = methyl, ethyl, propyl, butyl) as ion carriers in PIMs. It investigates the separation of copper (II), zinc (II), cobalt (II), and nickel (II) from aqueous solutions with the use of polymer inclusion membranes. PIMs are formed by casting a solution containing a carrier (extractant), a plasticizer (o-NPPE), and a base polymer such as cellulose triacetate (CTA) to form a thin, flexible, and stable film. The topics discussed include transport parameters, such as the type of carrier, initial fluxes, separation coefficients of copper in relation to other metals, as well as transport recovery of metal ions. The membrane was characterized using AFM and SEM to obtain information on its composition.


Author(s):  
I. O. Ekwere ◽  
M. Horsfall ◽  
J. O. E. Otaigbe

The photocatalytic reduction of Cu (II), Pb (II), Cd (II) and Cr (VI) ions in aqueous solution has been investigated. The photocatalyst utilized was nano titanium dioxide, composed of 80% anatase and 20% rutile; the UV light source was a 15 W UV bulb with a wavelength of 254 nm. The results obtained indicated a reduction efficiency order as follows; Cr6+ > Cu2+ > Pb2+ > Cd2+. It was observed that these results correlate with the respective reduction potentials of the metal ions. The effect of pH on the photocatalytic reduction of the metal ions was also carried out and results obtained indicated that with the exception of Cr (VI) ions, higher percentage removal of metal ions from their aqueous solution was recorded at alkaline pH than at acidic pH. This was attributed to an extensive formation of precipitate by the metal ions at alkaline pH. Kinetic studies revealed that the removal of metal ions from their solutions largely followed the pseudo- first-order kinetics. Therefore, the results of this study will be useful in metal ion removal from industrial waste water using photocatalytic process.


This study showed that kaolinite clay modified with Moringa oleifera pods is a promising low cost adsorbent for the removal of metals from aqueous solution because the resultant composite has higher adsorption capacities, and hence a better metal ions removal efficiency. The efficiencies of these adsorbents for the removal of Pb (II) and Cd (II) ions from aqueous solutions were studied as a function of pH, time, adsorbate concentration and adsorbent dose. Adsorption results showed that pH did significantly affect removal of heavy metal ions between pH 3 and 6. Increasing contact time and initial metal ion concentration increased the sorption capacity of the adsorbent for the metal ions. Adsorbent dosage indicated mainly surface phenomena involving sharing of electrons between the adsorbent surface and the metal ion species. The adsorption of metal ions from aqueous solutions of both metal ions at different initial metal ion concentrations reduced the initial adsorption rates of the adsorption of Pb (II) and Cd (II) by unmodified and modified kaolinite clay.


2018 ◽  
Vol 3 (11) ◽  
Author(s):  
Justin Pothoof ◽  
Michal Ruprecht ◽  
Ben D. Sliwinski ◽  
Ben M. Sosnowski ◽  
Polly R. Fitzgerald ◽  
...  

Abstract Two molecules, each including tris-2-amino-ethyleneamine (tren), have been produced using a Schiff’s base condensation and long-chain, aliphatic aldehydes. The syntheses are straightforward and can be run in air at ambient temperature. The ability of these molecules to complex with metal ions makes them good candidates for water remediation. The ability of these ligands to hold metal ions in 0.03 M non-aqueous solutions was unexpected. Their syntheses and characterization are discussed.


RSC Advances ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 3337-3344 ◽  
Author(s):  
Jie Ma ◽  
Mengya Sun ◽  
Yulan Zeng ◽  
Zhenhua Liu ◽  
Manman Zhang ◽  
...  

Herein, Acac-C@Fe3O4, a magnetic carbon (C@Fe3O4) modified with acetylacetone (Acac), was first prepared and used as a solid-phase adsorbent for adsorbing some heavy metal ions from aqueous solution.


2015 ◽  
Vol 7 (7) ◽  
pp. 3089-3095
Author(s):  
Wenjuan Fu ◽  
Xiangfeng Guo ◽  
Lihua Jia ◽  
Ying Ding

A new sensing membrane is proposed for the determination of Fe3+ over other common metal ions in an aqueous solution based on the quenching of the fluorescence intensity of the membrane by Fe3+. The fluorescence intensity of the membrane showed distinct changes towards Fe3+ with fast response, satisfactory stability and excellent sensitivity.


RSC Advances ◽  
2017 ◽  
Vol 7 (45) ◽  
pp. 27992-28000 ◽  
Author(s):  
Long Lv ◽  
Nan Chen ◽  
Chuanping Feng ◽  
Jing Zhang ◽  
Miao Li

Xanthate-modified cross-linked magnetic chitosan/poly(vinyl alcohol) particles (XCMCP) were synthesized and applied to remove Pb(ii) and Cu(ii) ions from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document