scholarly journals Synthesis and Characterization of Copper Sulphide Nanoparticles in Aqueous Surfactant Solutions

1998 ◽  
Vol 16 (8) ◽  
pp. 667-677 ◽  
Author(s):  
Santosh K. Haram ◽  
Anand R. Mahadeshwar ◽  
Sharad G. Dixit

Copper sulphide nanoparticles were synthesized by reacting a copper-ammonia complex with thiourea in aqueous micellar solutions of cationic, non-ionic and anionic surfactants. A blue shift in the absorption spectra revealed the formation of size-quantized nanoparticles. The influence of micelles in mediating the stabilization was studied by carrying out the reactions in surfactant solutions above and below the critical micelle concentration. The effect of thiourea on the stability of the nanoparticles was studied by synthesizing the nanoparticles at different mole ratios of reactants. Characterization of the nanoparticles was achieved by the use of transmission electron microscopy (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray microanalysis (EDAX) and UV–vis spectroscopy.

2020 ◽  
Vol 10 ◽  
pp. 184798042096688
Author(s):  
Galo Cárdenas-Triviño ◽  
Sergio Triviño-Matus

Metal colloids in 2-mercaptoethanol using nanoparticles (NPs) of iron (Fe), cobalt (Co), and nickel (Ni) were prepared by chemical liquid deposition method. Transmission electron microscopy, electron diffraction, UV-VIS spectroscopy, and scanning electron microscopy with electron dispersive X-ray spectroscopy characterized the resulting colloidal dispersions. The NPs exhibited sizes with ranges from 9.8 nm for Fe, 3.7 nm for Co, and 7.2 nm for Ni. The electron diffraction shows the presence of the metals in its elemental state Fe (0), Co (0), and Ni (0) and also some compounds FeO (OH), CoCo2S4, and NiNi2S4.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 212
Author(s):  
Hemmat M. Abd-Elhady ◽  
Mona A. Ashor ◽  
Abdelkader Hazem ◽  
Fayez M. Saleh ◽  
Samy Selim ◽  
...  

The ability of microorganisms to reduce inorganic metals has launched an exciting eco-friendly approach towards developing green nanotechnology. Thus, the synthesis of metal nanoparticles through a biological approach is an important aspect of current nanotechnology. In this study, Streptomyces aizuneusis ATCC 14921 gave the small particle of silver nanoparticles (AgNPs) a size of 38.45 nm, with 1.342 optical density. AgNPs produced by Streptomyces aizuneusis were characterized by means of UV-VIS spectroscopy and transmission electron microscopy (TEM). The UV-Vis spectrum of the aqueous solution containing silver ion showed a peak between 410 to 430. Moreover, the majority of nanoparticles were found to be a spherical shape with variables between 11 to 42 nm, as seen under TEM. The purity of extracted AgNPs was investigated by energy dispersive X-ray analysis (EDXA), and the identification of the possible biomolecules responsible for the reduction of Ag+ ions by the cell filtrate was carried out by Fourier Transform Infrared spectrum (FTIR). High antimicrobial activities were observed by AgNPs at a low concentration of 0.01 ppm, however, no deleterious effect of AgNPs was observed on the development and occurrence of Drosophila melanogaster phenotype. The highest reduction in the viability of the human lung carcinoma and normal cells was attained at 0.2 AgNPs ppm.


MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2769-2773
Author(s):  
Morales P. Patricio ◽  
Moncayo H. José María ◽  
García R. Miguel ◽  
Santoyo S. Jaime

ABSTRACTMagnetic nanoparticles were obtained by chemical coprecipitation technique from aqueous solutions of iron salts, the synthesis was carried out in an alkaline medium, obtaining magnetic nanoparticles of around 2-10 nm in size. The nanoparticles obtained were stabilized with polyvinylpirrolidone (PVP), the particle size was measured by transmission electron microscopy (TEM), the crystal structure of the magnetic nanoparticles obtained was verified by X-ray diffraction (DRX). The chemical composition of the nanoparticles powder was investigated using electron scanning microscope with energy dispersive X-ray spectroscopy (EDX) equipment. Optical properties as absorption was studied by UV-Vis spectroscopy.


e-Polymers ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Chunhua Luo ◽  
Meijuan Qian ◽  
Qiujing Dong

AbstractThermosensitive PNIPAM-coated Au nanoparticles (AuNPs@P(NIPAM-co-MADMAC)) were synthesized by the radical “grafting through” copolymerization of 4-methacryloyloxy-4′-dimethylaminochalcone (MADMAC), MAEL-capped AuNPs and N-isopropylacrylamide (NIPAM) using azobisisobutyronitrile (AIBN) as the initiator. AuNPs@P(NIPAM-co-MADMAC) were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR), and Fourier transform infrared (FTIR) spectroscopy. AuNPs@P(NIPAM-co-MADMAC) exhibited thermo-sensitivity from poly(NIPAM-co-MADMAC) chains and sensitive fluorescence from the MADMAC group. AuNPs@P(NIPAM-co-MADMAC) showed weak fluorescence after the temperature increased from 25°C to 45°C, or after β-cyclodextrin (β-CD) was added. Furthermore, it exhibited strong fluorescence when the solvent was changed to ethanol or chloroform.


2013 ◽  
Vol 12 (02) ◽  
pp. 1350013 ◽  
Author(s):  
S. C. DEY ◽  
S. S. NATH

Here we adopt a convenient green chemical route for synthesis of CdSe quantum dots, their characterization by UV/Vis absorption spectroscopy, X-ray diffraction study and transmission electron microscopy. We carry out photoluminescence and electroluminescence spectroscopy to investigate the variation in electro-optical property with size. By UV/Vis spectroscopy, blue shift is revealed and bandgap is also calculated. X-ray diffraction spectrum reveals cubic structure and transmission electron micrographs show quantum dots of different size distributions (in the range 2–8 nm). Both the luminescence spectroscopies reveal green-orange luminescence depending upon the size distribution and indicate the possibility of using CdSe quantum dots as light emitting devices with better compatibility and faster response.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550012
Author(s):  
Shweta Rajawat ◽  
M. S. Qureshi

In this work, we report synthesis of nanostructures of silver nanoparticles using X-ray films. Exposed X-ray films, which consist of silver nanoparticles, are cut into small pieces of size 1 cm × 1 cm. These pieces were heated in distilled water at temperature 70°C. These nanoparticles, separated from heated films, are simultaneously collected through electrolytic deposition using copper and carbon rods. The carbon rod is wrapped over by Low density polyethylene (LDPE) sheet for easy extraction. This process was carried in two different environments (1) in broad daylight and (2) on a cloudy day. Characterization of the two samples was done using X-Ray Diffractometer (XRD), Transmission Electron Microscopy (TEM) and UV-Vis spectroscopy. XRD of the particles gave peaks well in accordance with JCPDS file 04-. This result confirms formation of highly pure silver nanoparticles. TEM revealed that the interaction of silver nanoparticles with sunlight gave chain like structures whereas in the absence of interaction with sunlight, cloudy day, nanoflowers were formed. Nanostructures were more prominent for bigger particles.


2007 ◽  
Vol 14 (04) ◽  
pp. 693-696 ◽  
Author(s):  
HWA JIN CHA ◽  
YOUNG HWAN KIM ◽  
HYUN GIL CHA ◽  
YOUNG SOO KANG

Ag nanoparticles were synthesized by using thermal decomposition of Ag +–oleate complex. The mean size of Ag nanoparticle was confirmed as 10 nm with transmission electron microscopy (TEM). The crystal structure and optical property of Ag nanoparticles were studied with X-ray powder diffraction (XRD) and UV–vis spectroscopy, respectively. The Ag nanoparticles were used as seeds for Ag (core)/ SiO 2(shell) nanocomposite particles. TEM images of Ag (core)/ SiO 2(shell) nanocomposite particles showed that silver core was coated with 15 nm thickness of SiO 2 shell. The thickness of SiO 2 shells could be conveniently controlled by changing the concentration of sol–gel precursor or reaction time. The composition of Ag (core)/ SiO 2(shell) nanocomposite particle was investigated with energy-dispersive X-ray (EDX) spectrometer.


MRS Advances ◽  
2019 ◽  
Vol 4 (07) ◽  
pp. 419-424
Author(s):  
Nadja Maldonado-Luna ◽  
Sonia Bailón-Ruiz ◽  
Myrna Reyes-Blas ◽  
Oscar J. Perales-Perez

ABSTRACTThis work presents the synthesis of selenium-based nanoparticles via microwave-assisted heating and their subsequent characterization using UV-vis Spectroscopy (UV-Vis), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX), techniques. Ongoing research includes the study of the nanoparticles capacity to generate reactive oxygen species (ROS).


2015 ◽  
Vol 60 (2) ◽  
pp. 1159-1163 ◽  
Author(s):  
Ri Yu ◽  
Jiyeon Yun ◽  
Yoojin Kim

Abstract In this work is described a means of improving the chemical stability of Cu2O@SiO2, Cu2O@SnO2 and Cu2O@TiO2 materials. The SiO2, SnO2 and TiO2 coated samples were stable from pH 3 to pH 10 for up to seven days. To determine the stability of the coated nanoparticles, and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Details of the effect of variations in pH on the phase stability of core-shell type Cu2O were characterized using transmission electron microscopy and X-ray diffraction.


2021 ◽  
Vol 10 (2) ◽  
pp. 26-31
Author(s):  
Duy Nguyen Ngoc ◽  
Phu Dang Van ◽  
Quoc Le Anh ◽  
Lan Nguyen T. Kim ◽  
Hien Nguyen Quoc ◽  
...  

Among nanoparticle materials, selenium nanoparticles (SeNPs) have attracted wide spread attention due to their excellent bioavailability, high bioactivity and low toxicity compared to other ionic selenium compounds. SeNPs with size ~ 41.75 nm were synthesized by                γ-irradiation method using oligochitosan (OC) as stabilizer. The prepared SeNPs/OC were characterized by UV-Vis spectroscopy and transmission electron microscope (TEM) images. The SeNPs/OC powder was also prepared by spray drying technique and the purity was verified by energy dispersive X-ray (EDX) analysis. The results of EDX showed that SeNPs/OC solution was of high purity. The stability ofSeNPs/OC solution was investigated. The results indicated that SeNPs/OC solution had good stability after 60 days of storage at 4ºC. At ambient temperature, the SeNPs/OC solution was unstable and agglomerated after about 15 days. The SeNPs/OC synthesized by            γ-irradiation with the advantages of environmental friendly and mass production process may be potentially promising for applications in medicines, functional food and in other fields as well.


Sign in / Sign up

Export Citation Format

Share Document