Synthesis and characterization of thermosensitive and polarity-sensitive fluorescent PNIPAM-coated gold nanoparticles

e-Polymers ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Chunhua Luo ◽  
Meijuan Qian ◽  
Qiujing Dong

AbstractThermosensitive PNIPAM-coated Au nanoparticles (AuNPs@P(NIPAM-co-MADMAC)) were synthesized by the radical “grafting through” copolymerization of 4-methacryloyloxy-4′-dimethylaminochalcone (MADMAC), MAEL-capped AuNPs and N-isopropylacrylamide (NIPAM) using azobisisobutyronitrile (AIBN) as the initiator. AuNPs@P(NIPAM-co-MADMAC) were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR), and Fourier transform infrared (FTIR) spectroscopy. AuNPs@P(NIPAM-co-MADMAC) exhibited thermo-sensitivity from poly(NIPAM-co-MADMAC) chains and sensitive fluorescence from the MADMAC group. AuNPs@P(NIPAM-co-MADMAC) showed weak fluorescence after the temperature increased from 25°C to 45°C, or after β-cyclodextrin (β-CD) was added. Furthermore, it exhibited strong fluorescence when the solvent was changed to ethanol or chloroform.

2020 ◽  
Vol 10 ◽  
pp. 184798042096688
Author(s):  
Galo Cárdenas-Triviño ◽  
Sergio Triviño-Matus

Metal colloids in 2-mercaptoethanol using nanoparticles (NPs) of iron (Fe), cobalt (Co), and nickel (Ni) were prepared by chemical liquid deposition method. Transmission electron microscopy, electron diffraction, UV-VIS spectroscopy, and scanning electron microscopy with electron dispersive X-ray spectroscopy characterized the resulting colloidal dispersions. The NPs exhibited sizes with ranges from 9.8 nm for Fe, 3.7 nm for Co, and 7.2 nm for Ni. The electron diffraction shows the presence of the metals in its elemental state Fe (0), Co (0), and Ni (0) and also some compounds FeO (OH), CoCo2S4, and NiNi2S4.


2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


MRS Advances ◽  
2019 ◽  
Vol 4 (07) ◽  
pp. 419-424
Author(s):  
Nadja Maldonado-Luna ◽  
Sonia Bailón-Ruiz ◽  
Myrna Reyes-Blas ◽  
Oscar J. Perales-Perez

ABSTRACTThis work presents the synthesis of selenium-based nanoparticles via microwave-assisted heating and their subsequent characterization using UV-vis Spectroscopy (UV-Vis), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX), techniques. Ongoing research includes the study of the nanoparticles capacity to generate reactive oxygen species (ROS).


2003 ◽  
Vol 18 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
V. Oliveira ◽  
R. Vilar

This paper aims to contribute to the understanding of column formation mechanisms in Al2O3–TiC ceramics micromachined using excimer lasers. Chemical and structural characterization of columns grown in Al2O3–TiC composite processed with 200 KrF laser pulses at 10 J/cm2 was carried out by scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Fully developed columns consist of a core of unprocessed material surrounded by an outer layer of Al2TiO5, formed in oxidizing conditions, and an inner layer, formed in reducing conditions, composed of TiC and Al3Ti or an AlTi solid solution. Possible mechanisms of column formation are discussed.


2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2013 ◽  
Vol 873 ◽  
pp. 152-157
Author(s):  
Long Long Chen ◽  
Jun Ming Li ◽  
Xiao Min Gong ◽  
Jian Li

Using a chemically induced transition in an FeCl2 solution, γ-Fe2O3 nanoparticles can be prepared from an amorphous precursor composed of FeOOH and Mg (OH)2. Surface modification by adding ZnCl2 during liquid-phase synthesis was attempted. The magnetization, morphology, crystal structure, and chemical species of as-prepared samples were characterized by vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray energy-dispersive spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The experimental results showed that the surface of the γ-Fe2O3 nanoparticles can be modified by adding ZnCl2 to form composite nanoparticles with a γ-Fe2O3/ZnFe2O4 ferrite core coated with Zn (OH)2 and absorbed FeCl36H2O; this modification can be enhanced by additional NaOH.


Synlett ◽  
2018 ◽  
Vol 30 (01) ◽  
pp. 54-58 ◽  
Author(s):  
Timothy Swager ◽  
Cagatay Dengiz ◽  
You-Chi Wu

We report the synthesis and characterization of iptycene–naphthazarin dyes by using a sequential Diels–Alder approach. The tautomerization of naphthazarin was used as the key step in the synthesis, with structures confirmed by single-crystal X-ray and NMR analysis. The systematic trends in electronic properties were investigated by UV/Vis spectroscopy. BF2 complexes of the dyes were prepared by reaction with BF3·OEt2 in CH2Cl2.


Author(s):  
Katarzyna Matras-Postolek ◽  
A. Zaba ◽  
S. Sovinska ◽  
D. Bogdal

Zinc sulphide (ZnS) and zinc selenide (ZnSe) and manganese-doped and un-doped with different morphologies from 1D do 3D microflowers were successfully fabricated in only a few minutes by solvothermal reactions under microwave irradiation. In order to compare the effect of microwave heating on the properties of obtained  nanocrystals, additionally the synthesis under conventional heating was conducted additionally in similar conditions. The obtained nanocrystals were systematically characterized in terms of structural and optical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DR UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic activity of ZnSe, ZnS, ZnS:Mn and ZnSe:Mn nanocrystals with different morphologies was evaluated by the degradation of methyl orange (MO) and Rhodamine 6G (R6G), respectively. The results show that Mn doped NCs samples had higher coefficient of degradation of organic dyes under ultraviolet irradiation (UV).


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1096
Author(s):  
Ligang Luo ◽  
Xiao Han ◽  
Qin Zeng

A series of Ni-Fe/SBA-15 catalysts was prepared and tested for the catalytic hydrogenation of levulinic acid to γ-valerolactone, adopting methanol as the only hydrogen donor, and investigating the synergism between Fe and Ni, both supported on SBA-15, towards this reaction. The characterization of the synthesized catalysts was carried out by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), H2-TPD (hydrogen temperature-programmed desorption), XPS (X-ray photoelectron spectroscopy), and in situ FT-IR (Fourier transform–infrared spectroscopy) techniques. H2-TPD and XPS results have shown that electron transfer occurs from Fe to Ni, which is helpful both for the activation of the C=O bond and for the dissociative activation of H2 molecules, also in agreement with the results of the in situ FT-IR spectroscopy. The effect of temperature and reaction time on γ-valerolactone production was also investigated, identifying the best reaction conditions at 200 °C and 180 min, allowing for the complete conversion of levulinic acid and the complete selectivity to γ-valerolactone. Moreover, methanol was identified as an efficient hydrogen donor, if used in combination with the Ni-Fe/SBA-15 catalyst. The obtained results are promising, especially if compared with those obtained with the traditional and more expensive molecular hydrogen and noble-based catalysts.


Sign in / Sign up

Export Citation Format

Share Document