Intraoperative fluid balance during cardiopulmonary bypass: effects of different mean arterial pressures

Perfusion ◽  
2007 ◽  
Vol 22 (4) ◽  
pp. 273-278 ◽  
Author(s):  
Oddbjørn Haugen ◽  
Marit Farstad ◽  
Venny Kvalheim ◽  
Stig Hammersborg ◽  
Paul Husby

Financial support . This study was financially supported by The Western Norway Regional Health Authority, The Norwegian Council on Cardiovascular Diseases, Faculty of Medicine, University of Bergen and The Frank Mohn Foundation, Norway. Introduction. This study investigated whether two levels of mean arterial pressure (MAP) during cardiopulmonary bypass did influence per-operative fluid shifts. Methods. Sixteen pigs underwent 60 minutes of normothermic cardiopulmonary bypass (CPB) followed by 90 minutes of hypothermic CPB. Eight animals had a MAP of 60—80 mmHg by norepinephrine (HP group). Another 8 animals had a MAP of 40—45 mmHg by phentolamine (LP group). Blood chemistry, plasma/interstitial colloid osmotic pressures, plasma volume, fluid balance, fluid extravasation rate and tissue water content were measured or calculated. Results. The plasma volume was significantly lower in the HP group compared with the LP group after 60 minutes of CPB. Net fluid balance was 0.18 (0.05) ml·kg-1·min -1 in the HP group and 0.21 ml·kg- 1·min-1 in the LP group (P > 0.05) while fluid extravasation rate was 1.18 (0.5) and 1.13 (0.4) ml·kg -1·min-1 in the HP group and the LP group during CPB (P > 0.05). Conclusion. Net fluid balance and fluid extravasation rate were similar in the animals with elevated and with lowered MAP during CPB. Perfusion (2007) 22, 273—278.

2013 ◽  
Vol 119 (4) ◽  
pp. 861-870 ◽  
Author(s):  
Hege Kristin Brekke ◽  
Stig Morten Hammersborg ◽  
Steinar Lundemoen ◽  
Arve Mongstad ◽  
Venny Lise Kvalheim ◽  
...  

Abstract Background: A highly positive intraoperative fluid balance should be prevented as it negatively impacts patient outcome. Analysis of volume-kinetics has identified an increase in interstitial fluid volume after crystalloid fluid loading during isoflurane anesthesia. Isoflurane has also been associated with postoperative hypoxemia and may be associated with an increase in alveolar epithelial permeability, edema formation, and hindered oxygen exchange. In this article, the authors compare fluid extravasation rates before and during cardiopulmonary bypass (CPB) with isoflurane- versus propofol-based anesthesia. Methods: Fourteen pigs underwent 2 h of tepid CPB with propofol (P-group; n = 7) or isoflurane anesthesia (I-group; n = 7). Fluid requirements, plasma volume, colloid osmotic pressures in plasma and interstitial fluid, hematocrit levels, and total tissue water content were recorded, and fluid extravasation rates calculated. Results: Fluid extravasation rates increased in the I-group from the pre-CPB level of 0.27 (0.13) to 0.92 (0.36) ml·kg−1·min−1, but remained essentially unchanged in the P-group with significant between-group differences during CPB (pb = 0.002). The results are supported by corresponding changes in interstitial colloid osmotic pressure and total tissue water content. Conclusions: During CPB, isoflurane, in contrast to propofol, significantly contributes to a general increase in fluid shifts from the intravascular to the interstitial space with edema formation and a possible negative impact on postoperative organ function.


Perfusion ◽  
2008 ◽  
Vol 23 (1) ◽  
pp. 57-63 ◽  
Author(s):  
V Kvalheim ◽  
M Farstad ◽  
O Haugen ◽  
H Brekke ◽  
A Mongstad ◽  
...  

Cardiopulmonary bypass(CPB) is associated with fluid overload. We hypothesized that fluid gain during CPB could be reduced by substituting parts of a crystalloid prime with 7.2% hypertonic saline and 6% poly(O-2-hydroxyethyl) starch solution (HyperHaes®). 14 animals were randomized to a control group (Group C) or to Group H. CPB-prime in Group C was Ringer’s solution. In group H, 4 ml/kg of Ringer’s solution was replaced by the hypertonic saline / hydroxyethyl starch solution. After 60 min stabilization, CPB was initiated and continued for 120 min. All animals were allowed drifting of normal temperature (39.0°C) to about 35.0°C. Fluid was added to the CPB circuit as needed to maintain a 300-ml level in the venous reservoir. Blood chemistry, hemodynamic parameters, fluid balance, plasma volume, fluid extravasation rate (FER), tissue water content and acid-base parameters were measured/calculated. Total fluid need during 120 min CPB was reduced by 60% when hypertonic saline/hydroxyethyl starch solution was added to the CPB prime (p<0.01). The reduction was related to a lowered FER. The effect was most pronounced during the first 30 min on CPB, with 0.6 (0.43) (Group H) compared with 1.5 (0.40) ml/kg/min (Group C) (p<0.01). Hemodynamics and laboratory parameters were similar in both groups. Serum concentrations of sodium and chloride increased to maximum levels of 148 (1.5) and 112 (1.6) mmol/l in Group H. To conclude: addition of 7.2% hypertonic saline and 6% poly(O-2-hydroxyethyl) starch solution to crystalloid CPB prime reduces fluid needs and FER during tepid CPB.


Perfusion ◽  
2008 ◽  
Vol 23 (6) ◽  
pp. 311-322 ◽  
Author(s):  
E Hirleman ◽  
DF Larson

Edema is a common morbidity following cardiopulmonary bypass (CPB) and can result in injury to many organs, including the heart, lungs, and brain. Generalized edema is also common and can lead to increased post-operative hospital stay and other morbidities. Pediatric patients are more susceptible to post-CPB edema and the consequences are more severe for this population. Hemodilution and systemic inflammatory responses are two suspected causes of CPB-related edema; however, the mechanisms involved are far from understood. Also, the common strategies to improve edema have not been completely successful and there is a need for new strategies at maintaining a fluid balance of patients as close to physiological as possible, especially for pediatric patients. An integrative approach to understanding edema is necessary as the forces involved in fluid homeostasis are dynamic and interdependent. Therefore, this review will focus on the physiology of fluid homeostasis and the pathologies of fluid shifts during CPB which lead to general edema as well as tissue-specific edema.


Physiology ◽  
1996 ◽  
Vol 11 (3) ◽  
pp. 138-143 ◽  
Author(s):  
EM Renkin ◽  
VL Tucker

Unlike other natriuretics, which act via the kidneys to reduce interstitial fluid volume with little change in plasma volume, atrial natriuretic peptide has important extrarenal actions that enable it to reduce plasma volume preferentially.


1991 ◽  
Vol 48 (11) ◽  
pp. 2212-2222 ◽  
Author(s):  
Jean-François Doyon ◽  
Christiane Hudon ◽  
Roderick Morin ◽  
F. G. Whoriskey Jr.

This study characterizes the seasonal anadromous movements of a brook charr population and compares its biological and energetic characteristics with charr spending summer in freshwaters. Downstream movements monitored at a counting fence over 3 yr were most intense in spring but occurred until fall and were positively correlated with rapid increases of water level. The timing of movements varied from year to year. Smaller charr were most subject to being swept downstream compared with freshwater residents, and most trout were concentrated near the mouth of the river. These patterns suggest that the downstream movements of charr in this system are passive. Upstream migrants had a higher condition factor and a lower tissue water content than freshwater residents, indicating that downstream movements result in a faster accumulation of energetic reserves during summer. However, the fortuitous character of anadromous migrations as well as the absence of differences in the biological characteristics (growth, size at maturity, fecundity, egg size) suggests that anadromous and resident fish belong to a single population whose yearly migrant component could be randomly determined.


1987 ◽  
Vol 17 (10) ◽  
pp. 1228-1233 ◽  
Author(s):  
Joanna T. Tippett ◽  
Joanne L. Barclay

A new instrument, the plant impedance ratio meter (PIRM), has been used to determine the extent of lesions caused by Phytophthoracinnamomi Rands in Eucalyptusmarginata Sm. The performance of the PIRM, which measures electrical admittance (the inverse of impedance) of plant tissues at two frequencies (from which an impedance ratio is calculated), was evaluated and compared with that of the Shigometer. The electrical admittance measured at 1 and 10 kHz (PIRM) and the electrical resistance (Shigometer) of healthy tissue varied with both the depth of tissue probed and the water status of stems. However, the impedance ratios (calculated from the admittance values) remained relatively constant for healthy tissue and changes were independent of depth of probing. Hence, changes in ratios indicated a change in tissue condition or necrosis rather than changes in either tissue water content or depth of probing. The impedance ratios recorded for healthy bark tissues were consistently higher than those for the P. cinnamomi lesions in E. marginata. Trends in electrical resistance measured across the boundaries of the lesions with the Shigometer were variable depending on lesion age. The PIRM was used successfully to detect P. cinnamomi lesions in E. marinate and lesion fronts were predicted to an accuracy of ± 7.2 mm (n = 150), lesions being up to 1.0 m long at the time stems were harvested.


Perfusion ◽  
2017 ◽  
Vol 32 (8) ◽  
pp. 661-669
Author(s):  
Bjørg Elvevoll ◽  
Paul Husby ◽  
Venny L. Kvalheim ◽  
Lodve Stangeland ◽  
Arve Mongstad ◽  
...  

Objective: Use of deep hypothermic low-flow (DHLF) cardiopulmonary bypass (CPB) has been associated with higher fluid loading than the use of deep hypothermia circulatory arrest (DHCA). We evaluated whether these perfusion strategies influenced fluid extravasation rates and edema generation differently per-operatively. Materials and Methods: Twelve anesthetized pigs, randomly allocated to DHLF (n = 6) or DHCA (n = 6), underwent 2.5 hours CPB with cooling to 20°C for 30 minutes (min), followed by 30 min arrested circulation (DHCA) or 30 min low-flow circulation (DHLF) before 90 min rewarming to normothermia. Perfusion of tissues, fluid requirements, plasma volumes, colloid osmotic pressures and total tissue water contents were recorded and fluid extravasation rates calculated. During the experiments, cerebral microdialysis was performed in both groups. Results: Microvascular fluid homeostasis was similar in both groups, with no between-group differences, reflected by similar fluid extravasation rates, plasma colloid osmotic pressures and total tissue water contents. Although extravasation rates increased dramatically from 0.10 (0.11) ml/kg/min (mean with standard deviation in parentheses) and 0.16 (0.02) ml/kg/min to 1.28 (0.58) ml/kg/min and 1.06 (0.41) ml/kg/min (DHCA and DHLF, respectively) after the initiation of CPB, fluid filtrations during both cardiac arrest and low flow were modest and close to baseline values. Cerebral microdialysis indicated anaerobic metabolism and ischemic brain injury in the DHCA group. Conclusion: No differences in microvascular fluid exchange could be demonstrated as a direct effect of DHCA compared with DHLF. Thirty minutes of DHCA was associated with anaerobic cerebral metabolism and possible brain injury.


Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 289
Author(s):  
Wenke Markgraf ◽  
Jannis Lilienthal ◽  
Philipp Feistel ◽  
Christine Thiele ◽  
Hagen Malberg

The preservation of kidneys using normothermic machine perfusion (NMP) prior to transplantation has the potential for predictive evaluation of organ quality. Investigations concerning the quantitative assessment of physiological tissue parameters and their dependence on organ function lack in this context. In this study, hyperspectral imaging (HSI) in the wavelength range of 500–995 nm was conducted for the determination of tissue water content (TWC) in kidneys. The quantitative relationship between spectral data and the reference TWC values was established by partial least squares regression (PLSR). Different preprocessing methods were applied to investigate their influence on predicting the TWC of kidneys. In the full wavelength range, the best models for absorbance and reflectance spectra provided Rp2 values of 0.968 and 0.963, as well as root-mean-square error of prediction (RMSEP) values of 2.016 and 2.155, respectively. Considering an optimal wavelength range (800–980 nm), the best model based on reflectance spectra (Rp2 value of 0.941, RMSEP value of 3.202). Finally, the visualization of TWC distribution in all pixels of kidneys’ HSI image was implemented. The results show the feasibility of HSI for a non-invasively and accurate TWC prediction in kidneys, which could be used in the future to assess the quality of kidneys during the preservation period.


Sign in / Sign up

Export Citation Format

Share Document