scholarly journals Effects of adolescent caffeine consumption on cocaine self-administration and reinstatement of cocaine seeking

2018 ◽  
Vol 33 (1) ◽  
pp. 132-144
Author(s):  
Tracey A Larson ◽  
Casey E O’Neill ◽  
Michaela P Palumbo ◽  
Ryan K Bachtell

Background: Caffeine consumption by children and adolescents has risen dramatically in recent years, yet the lasting effects of caffeine consumption during adolescence remain poorly understood. Aim: These experiments explore the effects of adolescent caffeine consumption on cocaine self-administration and seeking using a rodent model. Methods: Sprague-Dawley rats consumed caffeine for 28 days during the adolescent period. Following the caffeine consumption period, the caffeine solution was replaced with water for the remainder of the experiment. Age-matched control rats received water for the duration of the study. Behavioral testing in a cocaine self-administration procedure occurred during adulthood (postnatal days 62–82) to evaluate how adolescent caffeine exposure influenced the reinforcing properties of cocaine. Cocaine seeking was also tested during extinction training and reinstatement tests following cocaine self-administration. Results: Adolescent caffeine consumption increased the acquisition of cocaine self-administration and increased performance on different schedules of reinforcement. Consumption of caffeine in adult rats did not produce similar enhancements in cocaine self-administration. Adolescent caffeine consumption also produced an upward shift in the U-shaped dose response curve on cocaine self-administration maintained on a within-session dose-response procedure. Adolescent caffeine consumption had no effect on cocaine seeking during extinction training or reinstatement of cocaine seeking by cues or cocaine. Conclusions: These findings suggest that caffeine consumption during adolescence may enhance the reinforcing properties of cocaine, leading to enhanced acquisition that may contribute to increased addiction vulnerability.

2017 ◽  
Author(s):  
Emily R. Hankosky ◽  
Sara Ruth Westbrook ◽  
Rachel M. Haake ◽  
Michela Marinelli ◽  
Joshua Michael Gulley

RATIONALE: Adolescence is a period of considerable development of brain and behavior and is the time during which most drug use is initiated. OBJECTIVE: Age-dependent differences in motivated behaviors may be one of the factors that contribute to heightened vulnerability to developing substance use disorders, so we sought to compare age differences in methamphetamine (METH) and saccharin seeking. METHODS: Beginning during adolescence or adulthood, male and female Sprague-Dawley rats were trained to self-administer 0.1% saccharin (via liquid dipper cup) or intravenous METH at one of three doses (0.02, 0.05, 0.08 mg/kg/inf) under increasing fixed ratios schedules of reinforcement. Subsequently, responding for METH (0.02, 0.05, 0.08 or 0.1 mg/kg/inf) under progressive ratio response requirements was assessed in rats that acquired METH self-administration at the highest dose (0.08 mg/kg/inf). RESULTS: We found that adult-onset rats acquired METH self-administration more readily and exhibited higher motivation compared to adolescent-onset rats, although there were no differences in METH intake during acquisition. Adult rats also acquired saccharin self-administration more readily, but in contrast to METH, there were age and sex differences in saccharin intake driven by high levels of responding in adult females. CONCLUSIONS: These findings challenge the prevailing notion that adolescents are hypersensitive to reward and instead raise questions about the potential role of methodological factors on which rodent studies often differ.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rachel D. Altshuler ◽  
Kristine T. Garcia ◽  
Xuan Li

Relapse is a major obstacle to curb the ongoing epidemic of prescription opioid abuse. We and others previously demonstrated that oxycodone seeking in adult rats progressively increases after abstinence from oxycodone self-administration (incubation of oxycodone craving). In humans, the onset of oxycodone use in adolescents may increase individuals’ vulnerability to later opioid addiction. However, little is known about incubation of oxycodone craving after adolescent-onset oxycodone self-administration in rats. In the first study, we trained single-housed adolescent (postnatal day 35 at start) and adult (postnatal day 77 at start) male Sprague–Dawley rats to self-administer oxycodone (0.1 mg/kg/infusion, 6 h/day for 10 days) and then tested oxycodone relapse on both abstinence day 1 and day 15. Given that social experience is critical for neurobehavioral development in adolescents, we performed the second study using group-housed adolescent and adult rats. In both studies, we observed no age differences in oxycodone self-administration and incubated oxycodone seeking on abstinence day 15. However, on abstinence day 1, we observed decreased oxycodone seeking in adolescents compared with adults. This pattern of data led to elevated incubation slopes in adolescent rats compared with adult rats. Finally, group-housed rats exhibited attenuated oxycodone seeking compared with single-housed rats on abstinence day 15, but not on day 1. Taken together, these data suggest that adolescents may be resistant to oxycodone relapse during early abstinence, but this resistance dissipates quickly during the transition between adolescent and young adulthood. In addition, group-housing plays a protective role against incubated oxycodone craving.


2012 ◽  
Vol 63 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Xiu-Quan Shi ◽  
Wei Yan ◽  
Ke-Yue Wang ◽  
Qi-Yuan Fan ◽  
Yan Zou

We tested the hypothesis that dietary fi bre (DF) has protective effects against manganese (Mn)-induced neurotoxicity. Forty-eight one-month old Sprague-Dawley rats were randomly divided into six groups: control, 16 % DF, Mn (50 mg kg-1 body weight), Mn+ 4 % DF, Mn+ 8 % DF, and Mn+ 16 % DF. After oral administration of Mn (as MnCl2) by intragastric tube during one month, we determined Mn concentrations in the blood, liver, cerebral cortex, and stool and tested neurobehavioral functions. Administration of Mn was associated with increased Mn concentration in the blood, liver, and cerebral cortex and increased Mn excretion in the stool. Aberrations in neurobehavioral performance included increases in escape latency and number of errors and decrease in step-down latency. Irrespective of the applied dose, the addition of DF in forage decreased tissue Mn concentrations and increased Mn excretion rate in the stool by 20 % to 35 %. All neurobehavioral aberrations were also improved. Our fi ndings show that oral exposure to Mn may cause neurobehavioral abnormalities in adult rats that could be effi ciently alleviated by concomitant supplementation of DF in animal feed.


1999 ◽  
Vol 276 (3) ◽  
pp. E558-E564 ◽  
Author(s):  
Regine Minet-Quinard ◽  
Christophe Moinard ◽  
Françoise Villie ◽  
Stephane Walrand ◽  
Marie-Paule Vasson ◽  
...  

Aged rats are more sensitive to injury, possibly through an impairment of nitrogen and glutamine (Gln) metabolisms mediated by glucocorticoids. We studied the metabolic kinetic response of adult and old rats during glucocorticoid treatment. The male Sprague-Dawley rats were 24 or 3 mo old. Both adult and old rats were divided into 7 groups. Groups labeled G3, G5, and G7 received, by intraperitoneal injection, 1.50 mg/kg of dexamethasone (Dex) for 3, 5, and 7 days, respectively. Groups labeled G3PF, G5PF, and G7PF were pair fed to the G3, G5, or G7 groups and were injected with an isovolumic solution of NaCl. One control group comprised healthy rats fed ad libitum. The response to aggression induced specifically by Dex (i.e., allowing for variations in pair-fed controls) appeared later in the aged rats (decrease in nitrogen balance from day 1 in adults but only from day 4 in old rats). The adult rats rapidly adapted to Dex treatment, whereas the catabolic state worsened until the end of treatment in the old rats. Gln homeostasis was not maintained in the aged rats; despite an early increase in muscular Gln synthetase activity, the Gln pool was depleted. These results suggest a kinetic impairment of both nitrogen and muscle Gln metabolisms in response to Dex with aging.


Author(s):  
Alexander J. Moszczynski ◽  
Madeline Harvey ◽  
Niveen Fulcher ◽  
Cleusa de Oliveira ◽  
Patrick McCunn ◽  
...  

Abstract Although it has been suggested that the co-expression of multiple pathological proteins associated with neurodegeneration may act synergistically to induce more widespread neuropathology, experimental evidence of this is sparse. We have previously shown that the expression of Thr175Asp-tau (tauT175D) using somatic gene transfer with a stereotaxically-injected recombinant adeno-associated virus (rAAV9) vector induces tau pathology in rat hippocampus. In this study, we have examined whether the co-expression of human tauT175D with mutant human TDP-43 (TDP-43M337V) will act synergistically. Transgenic female Sprague-Dawley rats that inducibly express mutant human TDP-43M337V using the choline acetyltransferase (ChAT) tetracycline response element (TRE) driver with activity modulating tetracycline-controlled transactivator (tTA) were utilized in these studies. Adult rats were injected with GFP-tagged tau protein constructs in a rAAV9 vector through bilateral stereotaxic injection into the hippocampus. Injected tau constructs were: wild-type GFP-tagged 2N4R human tau (tauWT; n = 8), GFP-tagged tauT175D 2N4R human tau (tauT175D, pseudophosphorylated, toxic variant, n = 8), and GFP (control, n = 8). Six months post-injection, mutant TDP-43M337V expression was induced for 30 days. Behaviour testing identified motor deficits within 3 weeks after TDP-43 expression irrespective of tau expression, though social behaviour and sensorimotor gating remained unchanged. Increased tau pathology was observed in the hippocampus of both tauWT and tauT175D expressing rats and tauT175D pathology was increased in the presence of cholinergic neuronal expression of human TDP-43M337V. These data indicate that co-expression of pathological TDP-43 and tau protein exacerbate the pathology associated with either individual protein.


1998 ◽  
Vol 274 (4) ◽  
pp. R1158-R1161
Author(s):  
Evvi-Lynn M. Rollins ◽  
James E. Fewell

In newborns and adults of a number of species including humans, exposure to acute hypoxemia produces a “regulated” decease in core temperature, the mechanism of which is unknown. Considering that various cortical areas participate in autonomic regulation including thermoregulation, the present experiments were carried out to test the hypothesis that the cerebral cortex plays a role in modulating the regulated decrease in core temperature during acute hypoxemia. This hypothesis was tested by determining the core temperature response to acute hypoxemia in chronically instrumented adult Sprague-Dawley rats before and after cortical spreading depression (i.e., functional decortication) was produced by the local application of potassium chloride to the dura overlying the cerebral hemispheres. There was no effect of cortical spreading depression on baseline core temperature. Core temperature decreased during acute hypoxemia in a similar fashion when the cerebral cortex was intact as well as during functional decortication. Thus our data do not support the hypothesis that the cerebral cortex modulates the regulated decrease in core temperature that occurs in adult rats during acute hypoxemia.


1995 ◽  
Vol 132 (1) ◽  
pp. 1-13 ◽  
Author(s):  
A.P.J.M. Vanbirgelen ◽  
J. Vanderkolk ◽  
K.M. Fase ◽  
I. Bol ◽  
H. Poiger ◽  
...  

1976 ◽  
Vol 81 (2) ◽  
pp. 537-547 ◽  
Author(s):  
E. Mäusle ◽  
G. Fickinger

ABSTRACT The outer zona fasciculata of 28 Sprague-Dawley rats, 8 weeks old, was studied by means of ultramorphometry. Four males and 4 females each received 1250 μg of testosterone proprionate (TP) or 300 μg oestradiol benzoate (OeB) on the second day of life. Four males and 4 females in oestrus or dioestrus served as controls. The controls showed both sex and cyclic differences: in comparison to the males, females displayed a finely dispersed lipoid pattern; enlargement of the nucleus and an increase in the amount of smooth endoplasmic reticulum (SER) indicated an increased stimulation of the cortex during oestrus. Neonatal administration of TP in females causes a distinct enlargement of cells with an increase in the volumes of nucleus, mitochondria, liposomes, SER and liposomes. The mitochondria and liposomes show a small-dispersed pattern of distribution. All these function-specific morphometric parameters point to an increased activity of the individual cell. The changes are less pronounced after OeB than after TP. In the male, neonatal administration of sex steroids results in an alteration of the sizes of the mitochondria and liposomes. The liposomes are distributed finely dispersed. At the same time there is an increase in the lipoid content. According to these parameters, fasciculata cells fulfil the morphological conditions that are a prerequisite for an elevated functional reaction. This change is more marked following OeB than TP. Sex dimorphism is preserved following neonatal application of sex steroids since the alterations are much more pronounced in females than in males.


1958 ◽  
Vol 36 (8) ◽  
pp. 855-859 ◽  
Author(s):  
H. F. Stich ◽  
M. L. Florian

The influence of serum and tissue homogenates on the mitotic rate of regenerating liver was tested. The following fractions were injected into Sprague–Dawley rats 24 hours after partial hepatectomy: (a) serum from normal 290–340 g. rats; (b) serum from rats 24 or 72 hours following partial hepatectomy; (c) liver homogenates from normal 290–340 g. rats; (d) regenerating liver homogenates (24 hours after partial hepatectomy); and, as controls, (e) brain homogenates representing non-mitotic tissues; (f) testes homogenates representing mitotically active tissues. Serum and liver from adult animals inhibit the onset of mitosis. Serum and regenerating liver from partially hepatectomized rats, as well as heterologous tissue, show no retarding effect.The results suggest the presence of an organ-specific inhibitor of mitosis in the serum and liver of adult animals.


2000 ◽  
Vol 88 (6) ◽  
pp. 2023-2030 ◽  
Author(s):  
S. A. Shore ◽  
J. H. Abraham ◽  
I. N. Schwartzman ◽  
G. G. Krishna Murthy ◽  
J. D. Laporte

During ozone (O3) exposure, adult rats decrease their minute ventilation (V˙e). To determine whether such changes are also observed in immature animals, Sprague-Dawley rats, aged 2, 4, 6, 8, or 12 wk, were exposed to O3(2 ppm) in nose-only-exposure plethysmographs. BaselineV˙e normalized for body weight decreased with age from 2.1 ± 0.1 ml ⋅ min−1⋅ g−1in 2-wk-old rats to 0.72 ± 0.03 ml ⋅ min−1⋅ g−1in 12-wk-old rats, consistent with the higher metabolic rates of younger animals. In adult (8- and 12-wk-old) rats, O3caused 40–50% decreases in V˙e that occurred primarily as the result of a decrease in tidal volume. In 6-wk-old rats, O3-induced changes inV˙e were significantly less, and in 2- and 4-wk-old rats, no significant changes inV˙e were observed during O3exposure. The increased baseline V˙e and the smaller decrements in V˙e induced by O3in the immature rats imply that their delivered dose of O3is much higher than in adult rats. To determine whether these differences in O3dose influence the extent of injury, we measured bronchoalveolar lavage protein concentrations. The magnitude of the changes in bronchoalveolar lavage induced by O3was significantly greater in 2- than in 8-wk-old rats (267 ± 47 vs. 165 ± 22%, respectively, P < 0.05). O3exposure also caused a significant increase in PGE2in 2-wk-old but not in adult rats. The results indicate that the ventilatory response to O3is absent in 2-wk-old rats and that lack of this response, in conjunction with a greater specific ventilation, leads to greater lung injury.


Sign in / Sign up

Export Citation Format

Share Document