scholarly journals Nogo-A regulates vascular network architecture in the postnatal brain

2016 ◽  
Vol 37 (2) ◽  
pp. 614-631 ◽  
Author(s):  
Thomas Wälchli ◽  
Alexandra Ulmann-Schuler ◽  
Christoph Hintermüller ◽  
Eric Meyer ◽  
Marco Stampanoni ◽  
...  

Recently, we discovered a new role for the well-known axonal growth inhibitory molecule Nogo-A as a negative regulator of angiogenesis in the developing central nervous system. However, how Nogo-A affected the three-dimensional (3D) central nervous system (CNS) vascular network architecture remained unknown. Here, using vascular corrosion casting, hierarchical, synchrotron radiation μCT-based network imaging and computer-aided network analysis, we found that genetic ablation of Nogo-A significantly increased the three-dimensional vascular volume fraction in the postnatal day 10 (P10) mouse brain. More detailed analysis of the cerebral cortex revealed that this effect was mainly due to an increased number of capillaries and capillary branchpoints. Interestingly, other vascular parameters such as vessel diameter, -length, -tortuosity, and -volume were comparable between both genotypes for non-capillary vessels and capillaries. Taken together, our three-dimensional data showing more vessel segments and branchpoints at unchanged vessel morphology suggest that stimulated angiogenesis upon Nogo-A gene deletion results in the insertion of complete capillary micro-networks and not just single vessels into existing vascular networks. These findings significantly enhance our understanding of how angiogenesis, vascular remodeling, and three-dimensional vessel network architecture are regulated during central nervous system development. Nogo-A may therefore be a potential novel target for angiogenesis-dependent central nervous system pathologies such as brain tumors or stroke.

2020 ◽  
Author(s):  
Thomas Wälchli ◽  
Jeroen Bisschop ◽  
Arttu Miettinen ◽  
Alexandra Ulmann-Schuler ◽  
Christoph Hintermüller ◽  
...  

ABSTRACTThe formation of new blood vessels and the establishment of vascular networks are crucial during brain development, in the adult healthy brain, as well as in various diseases of the central nervous system (CNS). Here, we describe a method that enables hierarchical imaging and computational analysis of vascular networks in postnatal- and adult mouse brains. Resin-based vascular corrosion casting, scanning electron microscopy, synchrotron radiation and desktop µCT imaging, and computational network analysis are used. Combining these methods enables detailed visualization and quantification of the three-dimensional (3D) brain vasculature. Network features such as vascular volume fraction, branch point density, vessel diameter, - length, -tortuosity, and -directionality as well as extravascular distance can be obtained at any developmental stage from the early postnatal to the adult brain. Our method allows characterizing brain vascular networks separately for capillaries and non-capillaries.The entire protocol, from mouse perfusion to vessel network analysis, takes approximately 10 days.Online summaryThis protocol uses vascular corrosion casting, hierarchical synchrotron radiation µCT imaging, and computational image analysis to assess the three-dimensional vascular network architecture.


Author(s):  
J.N. Turner ◽  
M. Siemens ◽  
D. Szarowski ◽  
D.N. Collins

A classic preparation of central nervous system tissue (CNS) is the Golgi procedure popularized by Cajal. The method is partially specific as only a few cells are impregnated with silver chromate usualy after osmium post fixation. Samples are observable by light (LM) or electron microscopy (EM). However, the impregnation is often so dense that structures are masked in EM, and the osmium background may be undesirable in LM. Gold toning is used for a subtle but high contrast EM preparation, and osmium can be omitted for LM. We are investigating these preparations as part of a study to develop correlative LM and EM (particularly HVEM) methodologies in neurobiology. Confocal light microscopy is particularly useful as the impregnated cells have extensive three-dimensional structure in tissue samples from one to several hundred micrometers thick. Boyde has observed similar preparations in the tandem scanning reflected light microscope (TSRLM).


2013 ◽  
Vol 14 (2) ◽  
pp. 160-166
Author(s):  
Diego Gazzolo ◽  
Laura D. Serpero ◽  
Alessandro Frigiola ◽  
Raul Abella ◽  
Alessandro Giamberti ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1453
Author(s):  
Joaquín Martí-Clúa

The synthetic halogenated pyrimidine analog, 5-bromo-2′-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2′-deoxyuridine to label dividing cells.


2000 ◽  
Vol 79 (8) ◽  
pp. 635-639 ◽  
Author(s):  
TOSHIYUKI HATA ◽  
TOSHIHIRO YANAGIHARA ◽  
MINAKO MATSUMOTO ◽  
UIKO HANAOKA ◽  
MARI UETA ◽  
...  

2013 ◽  
Vol 14 (2) ◽  
pp. 160-166
Author(s):  
Diego Gazzolo ◽  
Laura D. Serpero ◽  
Alessandro Frigiola ◽  
Raul Abella ◽  
Alessandro Giamberti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document