scholarly journals Doxycycline sensitizes renal cell carcinoma to chemotherapy by preferentially inhibiting mitochondrial translation

2021 ◽  
Vol 49 (10) ◽  
pp. 030006052110443
Author(s):  
Bo Wang ◽  
Jinsong Ao ◽  
Xiaoyan Li ◽  
Weimin Yu ◽  
Dan Yu ◽  
...  

Objectives The anti-cancer activity of doxycycline has been reported in many cancers but not renal cell carcinoma (RCC). This study aimed to determine the efficacy of doxycycline alone and in combination with paclitaxel and analyze the underlying mechanism in RCC. Methods Proliferation, colony formation and apoptosis assays were performed in RCC cell lines after drug treatments. An RCC xenograft mouse model was generated, and tumor growth was monitored. Mechanistic studies focused on mitochondrial translation and functions. Results Doxycycline at clinically achievable concentrations inhibited proliferation and colony formation and induced apoptosis in RCC cell lines. In normal kidney cells, doxycycline at the same concentrations either had no effect or was less effective. The combination index value demonstrated that doxycycline and paclitaxel were synergistic in vitro. Consistently, this combination therapy was significantly more effective than the monotherapy in RCC xenograft mice without causing significant toxicity. Mechanistic studies revealed that doxycycline acts on RCC cells via preferentially inhibiting mitochondrial DNA translation, thereby disrupting multiple mitochondrial complexes and impairing mitochondrial respiration. Conclusions Doxycycline is a useful addition to the treatment strategy for RCC. Our work also highlights the therapeutic value of mitochondrial translation inhibition in sensitizing RCC to chemotherapy.

2021 ◽  
Author(s):  
Feng-Juan Zhou ◽  
Sen Meng ◽  
Hongmei Yong ◽  
Ping-Fu Hou ◽  
Min-Le Li ◽  
...  

Abstract Renal cell carcinoma (RCC) is one of the most prevalent cancers. Long noncoding RNAs (LncRNAs) have been indicated as a mediator acted in tumorigenesis of RCC. However, the mechanism of LINC00460 on RCC is yet to be investigated. This study aimed to investigate the potential function of LINC00460 and underlying mechanism of RCC. We detected LINC00460 expression in RCC tissues and the prognosis in RCC patients using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. LINC00460 level in normal renal cell line and RCC cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR). We study the effects of LINC00460 on proliferation, migration, invasion, apoptosis in RCC cells lines using a series of in vivo and in vitro experiments. RNA sequencing (RNA-seq) analysis for the whole transcriptome was applied to searching potential LINC00460 related signal pathway in RCC. We identified the significant up-regulated expression level of LINC00460 in RCC tissues and cell lines. Elevated LINC00460 was correlated with shorter survival of RCC patients. Overexpression of LINC00460 promoted cell viability, proliferation, invasion and migration, while down-regulation of LINC00460 exerted inhibitory effect on these activities. We crucially identified that LNC00460 promotes development of RCC by influencing the PI3K/AKT pathway. Knockdown of LNC00460 decreased the phosphorylation of AKT and mTOR. The key finding of our study provided a new evidence suggesting that LINC00460 functions as an oncogene in RCC pathogenesis by mediating the PI3K/AKT pathway, which may provide a new target for the treatment of RCC.


2021 ◽  
Author(s):  
Dong Lv ◽  
Taimin Shen ◽  
Juncheng Yao ◽  
Qi Yang ◽  
Ying Xiang ◽  
...  

Abstract Background Multiple studies have found that microRNAs contribute to the malignant progression and chemoresistance of renal cell carcinoma (RCC). This study intends to probe the effect of miR-19b-3p shuttled by exosomes derived from RCC cells on RCC development and its resistance to Sunitinib. Methods Sunitinib-resistant cell lines (OSRC-2R and Caki-1R) were constructed from OSRC-2 and Caki-1 RCC cells. Exosomes in the RCC cell supernatant were isolated, and the miR-19b-3p profile in cells and exosomes was measured by reverse transcription-polymerase chain reaction (RT-PCR). Subsequently, the TGFβR2/SMAD2/3 pathway was activated by TGFβ, and the KLF10 overexpression and miR-19b-3p overexpression/knockdown models were constructed. The cell counting kit-8 (CCK-8) assay, colony formation assay and flow cytometry were implemented to verify RCC cell proliferation, Sunitinib chemosensitivity, and apoptosis. The expression of apoptosis-related proteins and the TGFβR2-SMAD2/3-KLF10 pathway was monitored by Western blot. MiR-19b-3p was overexpressed in sunitinib-resistant RCC cell lines (OSRC-2R and Caki-1R) and their exosomes (vs. normal OSRC-2 and Caki-1 cell lines). Results In-vitro experiments showed that knocking down cellular and exosomal miR-19b-3p levels reduced the proliferation and colony-forming ability of OSRC-2 and Caki-1 cells and strengthened their apoptosis and sensitivity to Sunitinib. Bioinformatics analysis illustrated that miR-19b-3p targeted TGFβR2 and inhibited TGFβR2/SMAD2/3. Activation of the TGFβR2-SMAD2/3 pathway via TGFβ dampened ORSC-2 and Caki-1 cell proliferation, induced apoptosis, and enhanced their chemosensitivity to Sunitinib. Conclusion Moreover, TGFβ heightened KLF10 expression, and overexpressing KLF10 attenuated miR-19b-3p-mediated carcinogenic effects and resistance to Sunitinib by increasing SMAD2/3 phosphorylation. RCC cell-derived exosomal miR-19b-3p enhances RCC progression and Sunitinib chemoresistance by inactivating TGFβR2-SMAD2/3-KLF10.


2018 ◽  
Vol 49 (6) ◽  
pp. 2348-2357 ◽  
Author(s):  
Ruojing Wei ◽  
Dalin He ◽  
Xinshi Zhang

Background/Aims: Cancer stem cells (CSCs) contribute to tumorgenesis, invasion and metastasis, and are typically resistant to chemotherapy. Recent reports showed that SIRT2 was upregulated in several cancers. However, whether SIRT2 may be a CSC marker in renal cell carcinoma (RCC) is not clear. Methods: The SIRT2 levels in both RCC samples and the corresponding normal kidney samples (NT) were assessed by RT-qPCR and ELISA. The association between SIRT2 levels and patient survival was examined using Bivariate correlation analysis by Spearman’s Rank Correlation Coefficients. The survival of the patients was analyzed using Kaplan-Meier curve. In vitro, 2 RCC cell lines were co-transduced with a lentivirus expressing both a green fluorescent protein and a luciferase reporter under a cytomegalovirus promoter, and another lentivirus expressing a nuclear red fluorescent protein reporter under the control of a SIRT2 promoter for differentiating SIRT2+ vs SIRT2- RCC cells by flow cytometry. The SIRT2+ vs SIRT2- RCC cells were examined for the potential of forming tumor sphere in a tumor sphere formation assay, resistance to fluorouracil-induced apoptosis by CCK-8 assay, and the frequency of forming tumor in vivo after serial adoptive transplantation by bioluminescence. Results: The levels of SIRT2 were higher in RCC samples than NT. The prognosis of RCC patients with high SIRT2 was worse than that of with low SIRT2. Compared to SIRT2- cells, SIRT2+ cells formed more tumor spheres, appeared to be more resistant towards fluorouracil-induced apoptosis, and generated bigger tumors with higher frequency after serial adoptive transplantation. Conclusion: SIRT2 may be highly expressed in the RCC stem-like cells and regulates cancer metastasis. Selective knockout of SIRT2 or elimination of SIRT2+ cells may improve the therapeutic outcome for patients with RCC.


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 592-592 ◽  
Author(s):  
Chen Zhao ◽  
Christopher G. Wood ◽  
Jose A. Karam ◽  
Tapati Maity ◽  
Lei Wang

592 Background: Zinc finger protein 395 (ZNF395) is frequently altered in several tumor types. However, the role of ZNF395 remains poorly studied in patients with clear cell renal cell carcinoma (RCC). In this study, we investigated the in vitro and in vivo role of ZNF395 in ccRCC. Methods: cBioPortal For Cancer Genomics was used to correlate the expression of ZNF395 with RCC patient clinical, pathological and molecular profiles. ZNF395 protein and mRNA levels were studied in several RCC cell lines in vitro. Subsequently, ZNF395 knockdown was performed in 786-O and UMRC3 RCC cells and overexpression was done in Caki-1 and 769-P RCC cells. We then evaluated ZNF395 modulation in these cell lines by in vitro MTT, migration and invasion assays. Finally, we studied the effect of ZNF395 knockout and overexpression in vivo using SCID xenograft models. Results: Patients with higher expression of ZNF395 experienced longer disease-free survival and overall survival. Using in vitro models, we confirmed that knockdown of ZNF395 decreased ZNF395 expression, and increased proliferation, migration and invasiveness of 786-O and UMRC3, while overexpression of ZNF395 increased ZNF395 expression, and reduced proliferation, migration and invasiveness of Caki-1 and 769-P. Using in vivo mouse models, knockdown of ZNF395 expression in 786-O promoted tumor growth while its overexpression in Caki-1 resulted in tumor growth inhibition. We are currently performing experiments to understand the process by which ZNF395 regulates ccRCC pathogenesis. Conclusions: Our data support the role of ZNF395 as an important tumor suppressor gene in the pathogenesis of RCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Dehong Chen ◽  
Xiaosong Sun ◽  
Xuejun Zhang ◽  
Jun Cao

Renal cell carcinoma (RCC) is the most aggressive type of genitourinary cancer and is resistant to current therapies. Identifying drugs that enhance the efficacy of RCC standard-of-care drugs at sublethal concentrations is an alternative therapeutic strategy. Ribociclib is an orally available cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor that is approved for the treatment of breast cancer. In this work, we demonstrate that ribociclib at clinically achievable concentrations inhibits proliferation of 7 out of 9 tested RCC cell lines, with IC50 range from 76 to 280 nM. In addition, ribociclib induces apoptosis of RCC cells, but with less potency compared to its antiproliferative activity. The combination of ribociclib with chemotherapeutic or immunotherapeutic agents is synergistic in RCC cell lines. Of note, ribociclib demonstrates selective anti-RCC activity by sparing normal kidney cells and fibroblast cells. Consistent with the in vitro findings, ribociclib inhibits RCC growth at the dosage that does not lead to toxicity in mice and enhances the in vivo efficacy of RCC standard-of-care drugs. Mechanistically, we show that ribociclib remarkably inhibits phosphorylation of retinoblastoma protein (Rb) at various sites, leading to the suppression of transcription of E2F target genes in RCC cells. Our findings clearly demonstrate the potency and selectivity of ribociclib in RCC preclinical models, via inhibition of the CDK4/6-cyclin D/Rb pathway. Our findings support a clinical trial for the combination of ribociclib with chemo/immunotherapy in RCC.


2020 ◽  
Vol 29 ◽  
pp. 096368972092575
Author(s):  
Jiping Sun ◽  
Aiping Yin ◽  
Wenjing Zhang ◽  
Jia Lv ◽  
Yu Liang ◽  
...  

Clear cell renal cell carcinoma (ccRCC) is the prominent histological subtype of renal cell carcinoma (RCC) with high incidence of local recurrence and distant metastasis. It has been documented that circular ribonucleic acids (circRNAs) play crucial roles in the development of cancers; however, study on exploring the role of circRNAs in ccRCC still remains limited. In the present study, we aimed to evaluate the biological function of a novel circRNA UBAP2 (circUBAP2) in ccRCC and the underlying mechanism. Our results showed that circUBAP2 expression was significantly down-regulated in ccRCC tissues and cell lines. Overexpression of circUBAP2 significantly inhibited the proliferation, migration, and invasion of ccRCC cells. MiR-148a-3p was a target miRNA of circUBAP2 in ccRCC cells, and its expression levels in ccRCC tissues and cell lines were negatively correlated with circUBAP2 levels. Moreover, miR-148a-3p reversed the inhibitory effects of circUBAP2 on cell proliferation, migration, and invasion in ccRCC cells. Additionally, forkhead box K2 (FOXK2) was found to be a target gene of miR-148a-3p and regulated by miR-148a-3p in ccRCC cells. Furthermore, knockdown of FOXK2 reversed the inhibitory effects of miR-148a-3p inhibitor on ccRCC cells. In conclusion, these findings indicated that circUBAP2 functioned as a novel tumor suppressor in ccRCC through regulating the miR-148a-3p/FOXK2 axis. Therefore, circUBAP2 might serve as a potential therapeutic target for the treatment of ccRCC.


2014 ◽  
Vol 14 (1) ◽  
pp. 63 ◽  
Author(s):  
Lichen Teng ◽  
Dexin Ding ◽  
Yongsheng Chen ◽  
Hongshuang Dai ◽  
Guobin Liu ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jianping Zhang ◽  
Shengming Jin ◽  
Wenjun Xiao ◽  
Xuchao Zhu ◽  
Chengyou Jia ◽  
...  

Abstract Background Emerging evidences have revealed that long non-coding RNAs (lncRNAs) have played critical roles in tumor occurrence and progression. LINC00641 has been reported to be involved in the initiation and development of several cancers in the recent years. However, the detailed biological role of LINC00641 in renal cell carcinoma (RCC) remains largely unclear. Methods In this study, the expression and biological function of LINC00641 were assessed in renal carcinoma both in vitro and in vivo. Cell proliferation, migration and colony formation assay were performed to explore the effect of LINC00641on growth, progression and invasion of RCC cell. qRT-PCR, flow cytometry and luciferase reporter assay and in vivo tumorigenicity assay were also carried out. Results The expression of LINC00641 was overexpressed in RCC tissues and cell lines, and high LINC00641 expression was correlated with tumor-node-metastasis stage. Furthermore, Silencing of LINC00641 remarkably inhibited the ability of cell proliferation, colony formation, and invasive capacities, as well as increasing the apoptotic rates of RCC cells in vitro. Mechanistically, miR-340-5p was validated to be targeted by LINC00641 and knockdown of miR-340-5p counteracted LINC00641 silencing-mediated inhibition of RCC progression. In addition, in vivo experiment confirmed the findings discovered in vitro. Conclusions These results suggested that LINC00641 promoted the progression of RCC by sponging miR-340-5p.


Sign in / Sign up

Export Citation Format

Share Document