Naturally Acquired Mouse Kidney Parvovirus Infection Produces a Persistent Interstitial Nephritis in Immunocompetent Laboratory Mice

2020 ◽  
Vol 57 (6) ◽  
pp. 915-925
Author(s):  
Elijah F. Edmondson ◽  
Wang-Ting Hsieh ◽  
Josh A. Kramer ◽  
Matthew W. Breed ◽  
Melody E. Roelke-Parker ◽  
...  

Mouse kidney parvovirus (MKPV), also known as murine chapparvovirus (MuCPV), is an emerging, highly infectious agent that has been isolated from laboratory and wild mouse populations. In immunocompromised mice, MKPV produces severe chronic interstitial nephropathy and renal failure within 4 to 5 months of infection. However, the course of disease, severity of histologic lesions, and viral shedding are uncertain for immunocompetent mice. We evaluated MKPV infections in CD-1 and Swiss Webster mice, 2 immunocompetent stocks of mice. MKPV-positive CD-1 mice ( n = 30) were identified at approximately 8 weeks of age by fecal PCR (polymerase chain reaction) and were subsequently housed individually for clinical observation and diagnostic sampling. Cage swabs, fecal pellets, urine, and blood were evaluated by PCR at 100 and 128 days following the initial positive test, which identified that 28 of 30 were persistently infected and 24 of these were viremic at 100 days. Histologic lesions associated with MKPV in CD-1 ( n = 31) and Swiss mice ( n = 11) included lymphoplasmacytic tubulointerstitial nephritis with tubular degeneration. Inclusion bodies were rare; however, intralesional MKPV mRNA was consistently detected via in situ hybridization within tubular epithelial cells of the renal cortex and within collecting duct lumina. In immunocompetent CD-1 mice, MKPV infection resulted in persistent shedding of virus for up to 10 months and a mild tubulointerstitial nephritis, raising concerns that this virus could produce study variations in immunocompetent models. Intranuclear inclusions were not a consistent feature of MKPV infection in immunocompetent mice.

2001 ◽  
Vol 12 (7) ◽  
pp. 1327-1334 ◽  
Author(s):  
KATSUKI KOBAYASHI ◽  
SHINICHI UCHIDA ◽  
SHUKI MIZUTANI ◽  
SEI SASAKI ◽  
FUMIAKI MARUMO

Abstract. CLC-K2, a kidney-specific member of the CLC chloride channel family, is thought to play an important role in the transepithelial Cl- transport in the kidney. This consensus was first reached shortly after it was demonstrated that the mutations of the human CLCNKB gene resulted in Bartter's syndrome type III. To clarify the pathogenesis, the exact intrarenal and cellular localization of CLC-K2 by immunohistochemistry of the Clcnk1-/- mouse kidney were investigated by use of an anti-CLC-K antibody that recognized both CLC-K1 and CLC-K2. CLC-K2 is expressed in the thick ascending limb of Henle's loop and distal tubules, where it is localized to the basolateral membranes. The localization of CLC-K2 to these nephron segments strongly implies that CLC-K2 confers the basolateral chloride conductance in the thick ascending limb of Henle's loop and distal tubules, where Cl- is taken up by the bumetanide-sensitive Na-K-2Cl cotransporter or the thiazide-sensitive Na-Cl cotransporter at the apical membranes. CLC-K2 expression was also shown to extend into the connecting tubule in the basolateral membrane. CLC-K2 was found in basolateral membranes of the type A intercalated cells residing along the collecting duct. This localization strongly suggests that CLC-K2 confers the basolateral conductance in the type A intercalated cells where Cl- is taken up by the anion exchanger in exchange for HCO3- at the basolateral membranes. These aspects of CLC-K2 localization suggest that CLC-K2 is important in Cl- transport in the distal nephron segments.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 265 ◽  
Author(s):  
Sathish Murali ◽  
Takwa Aroankins ◽  
Hanne Moeller ◽  
Robert Fenton

Aquaporin 2 (AQP2) mediates the osmotic water permeability of the kidney collecting duct in response to arginine vasopressin (VP) and is essential for body water homeostasis. VP effects on AQP2 occur via long-term alterations in AQP2 abundance and short-term changes in AQP2 localization. Several of the effects of VP on AQP2 are dependent on AQP2 phosphorylation and ubiquitylation; post-translational modifications (PTM) that modulate AQP2 subcellular distribution and function. Although several protein kinases, phosphatases, and ubiquitin E3 ligases have been implicated in AQP2 PTM, how AQP2 is deubiquitylated or the role of deubiquitylases (DUBS) in AQP2 function is unknown. Here, we report a novel role of the ubiquitin-specific protease USP4 in modulating AQP2 function. USP4 co-localized with AQP2 in the mouse kidney, and in mpkCCD14 cells USP4 and AQP2 abundance are increased by VP. AQP2 and USP4 co-immunoprecipitated from mpkCCD14 cells and mouse kidney, and in vitro, USP4 can deubiquitylate AQP2. In mpkCCD14 cells, shRNA mediated knockdown of USP4 decreased AQP2 protein abundance, whereas no changes in AQP2 mRNA levels or VP-induced cAMP production were detected. VP-induced AQP2 membrane accumulation in knockdown cells was significantly reduced, which was associated with higher levels of ubiquitylated AQP2. AQP2 protein half-life was also significantly reduced in USP4 knockdown cells. Taken together, the data suggest that USP4 is a key regulator of AQP2 deubiquitylation and that loss of USP4 leads to increased AQP2 ubiquitylation, decreased AQP2 levels, and decreased cell surface AQP2 accumulation upon VP treatment. These studies have implications for understanding body water homeostasis.


2001 ◽  
Vol 98 (5) ◽  
pp. 2712-2716 ◽  
Author(s):  
M. Robert-Nicoud ◽  
M. Flahaut ◽  
J.-M. Elalouf ◽  
M. Nicod ◽  
M. Salinas ◽  
...  

2006 ◽  
Vol 69 (4) ◽  
pp. 842-846 ◽  
Author(s):  
KAZUE TAKEUCHI ◽  
NUTAN MYTLE ◽  
SONYA LAMBERT ◽  
MARGARET COLEMAN ◽  
MICHAEL P. DOYLE ◽  
...  

Listeriosis results from exposure to the foodborne pathogen Listeria monocytogenes. Although many different strains of L. monocytogenes are isolated from food, no definitive tests currently predict which isolates are most virulent. The objectives of this study were to address two major data gaps for risk assessors, variability among L. monocytogenes strains in pathogenicity and virulence. Strains used in our monkey clinical trial or additional food isolates were evaluated for their virulence and infectivity in mice. All strains were equally pathogenic to immunocompromised mice, causing deaths to 50% of the population 3 days after exposure to doses ranging from 2 to 3 log CFU. Doses resulting in 50% deaths on the fifth day after administration were 1 to 2 log lower than those on the third day, indicating that the full course of pathogenicity exceeds the 3-day endpoint in immunocompromised mice. Three strains were chosen for further testing for their virulence and infectivity in liver and spleen in normal (immunocompetent) mice. Virulence was not significantly different (P > 0.05) among the three strains, all resulting in deaths to 50% of mice at 5 to 7 log CFU by 5 days after administration. All strains were equally infective in liver or spleen, with higher numbers of L. monocytogenes directly correlated with higher doses of administration. In addition, there was no preference of organs by any strains. The lack of strain differences may reflect the limitation of the mouse model and suggests the importance of using various models to evaluate the pathogenicity and virulence of L. monocytogenes strains.


2007 ◽  
Vol 292 (1) ◽  
pp. F456-F466 ◽  
Author(s):  
Wencui Zheng ◽  
Jill W. Verlander ◽  
I. Jeanette Lynch ◽  
Melanie Cash ◽  
Jiahong Shao ◽  
...  

Mechanisms of K+ secretion and absorption along the collecting duct are not understood fully. Because KCNQ1 participates in K+ secretion within the inner ear and stomach, distribution of KCNQ1 in mouse kidney was studied using Northern and Western analyses, RT-PCR of isolated tubules, and immunohistochemistry. Northern blots demonstrated KCNQ1 transcripts in whole kidney. RT-PCR showed KCNQ1 mRNA in isolated distal convoluted tubule (DCT), connecting segment (CNT), collecting ducts (CD), and glomeruli. Immunoblots of kidney and stomach revealed a ∼75-kDa protein, the expected mobility for KCNQ1. KCNQ1 was detected by immunohistochemistry throughout the distal nephron and CD. Thick ascending limbs exhibited weak basolateral immunolabel. In DCT and CNT cells, immunolabel was intense and basolateral, although KCNQ1 label was stronger in late than in early DCT. Initial collecting tubule and cortical CD KCNQ1 immunolabel was predominantly diffuse, but many cells exhibited discrete apical label. Double-labeling experiments demonstrated that principal cells, type B intercalated cells, and a few type A intercalated cells exhibited distinct apical KCNQ1 immunolabel. In inner medullary CD, principal cells exhibited distinct basolateral KCNQ1 immunolabel, whereas intercalated cells showed diffuse cytoplasmic staining. Thus KCNQ1 protein is widely distributed in mouse distal nephron and CD, with significant axial and cellular heterogeneity in location and intensity. These findings suggest that KCNQ1 has cell-specific roles in renal ion transport and may participate in K+ secretion and/or absorption along the thick ascending limb, DCT, connecting tubule, and CD.


2004 ◽  
Vol 279 (49) ◽  
pp. 51002-51012 ◽  
Author(s):  
Stéphanie Michlig ◽  
Annie Mercier ◽  
Alain Doucet ◽  
Laurent Schild ◽  
Jean-Daniel Horisberger ◽  
...  

Blood ◽  
1996 ◽  
Vol 88 (12) ◽  
pp. 4500-4509 ◽  
Author(s):  
KE Sahr ◽  
BP Daniels ◽  
M Hanspal

The AE1 gene is expressed in erythrocytes and the A-type intercalated cells of the kidney distal collecting duct. Although the 5′ end of the principal transcript expressed in murine erythroid cells has previously been mapped to a cluster of transcription start sites located immediately upstream of exon 1, the 5′ end of the mouse kidney transcript has not been identified. Using the anchored polymerase chain reaction technique to analyze mouse kidney AE1 mRNA, we identified an internal transcription start site located within erythroid intron 3. This site defines an exon of 37 nucleotides that forms the 5′ end of the mouse kidney AE1 transcript. AE1 transcripts beginning at this internal start site could not be detected in RNA isolated from purified erythroid progenitor cells or from erythroid cells undergoing erythropoietin-dependent terminal maturation, although transcripts derived from the upstream site were abundant, indicating that only the upstream promoter is active during erythropoiesis. Transient expression of reporter constructs in erythroid and nonerythroid cell lines identified a proximal upstream region of approximately 135 nucleotides that was active as a basal promoter. However, an additional approximately 200 nucleotides of upstream sequence was required for induced levels of activity in erythroid cells. Although our functional approach does not yet indicate the precise sequences required for erythroid induction, the AE1 gene upstream region contains potential GATA sites at -154, -141, and -60; an E-box at -163; CACCC or GGTGG motifs at -188, -121, and -88; and an AP-1/NF-E2-like site at -42.


1999 ◽  
Vol 277 (6) ◽  
pp. F957-F965 ◽  
Author(s):  
Hisato Sakamoto ◽  
Yoshikazu Sado ◽  
Ichiro Naito ◽  
Tae-Hwan Kwon ◽  
Shinichi Inoue ◽  
...  

To determine the immunolocalization of ClC-5 in the mouse kidney, we developed a ClC-5-specific rat monoclonal antibody. Immunoblotting demonstrated an 85-kDa band of ClC-5 in the kidney and ClC-5 transfected cells. Immunocytochemistry revealed significant labeling of ClC-5 in brush-border membrane and subapical intracellular vesicles of the proximal tubule. In addition, apical and cytoplasmic staining was observed in the type A intercalated cells in the cortical collecting duct. In contrast, the staining was minimal in the outer and inner medullary collecting ducts and the thick ascending limb. Western blotting of vesicles immunoisolated by the ClC-5 antibody showed the presence of H+-ATPase, strongly indicating that these two proteins were present in the same membranes. Double labeling with antibodies against ClC-5 and H+-ATPase and analysis by confocal images showed that ClC-5 and H+-ATPase colocalized in these ClC-5-positive cells. These findings suggest that ClC-5 might be involved in the endocytosis and/or the H+ secretion in the proximal tubule cells and the cortical collecting duct type A intercalated cells in mouse kidney.


2021 ◽  
Vol 22 (12) ◽  
pp. 6583
Author(s):  
Karolina Kot ◽  
Patrycja Kupnicka ◽  
Oliwia Witulska ◽  
Aleksandra Czepan ◽  
Natalia Agnieszka Łanocha-Arendarczyk ◽  
...  

Recent studies indicate that Acanthamoeba spp. may play a significant role in kidney dysfunction. The aim of the study was to examine the levels of kidney injury molecule 1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and monocyte chemotactic protein 1 (MCP-1), as well as an activity of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9, respectively) in the kidneys of immunocompetent and immunosuppressed mice infected with Acanthamoeba spp. The levels of KIM-1, NGAL, and MCP-1 were analyzed by enzyme-linked immunosorbent assay (ELISA), and the activity of MMPs was determined by gelatin zymography. The elevated KIM-1 level was found in the kidneys of immunocompetent mice at the beginning of Acanthamoeba spp. infection. In the immunosuppressed mice, the KIM-1 level was statistically different. The statistically decreased NGAL level was found in the kidneys of immunocompetent mice compared to the uninfected mice. In the immunocompromised mice, we found statistically significant differences in MCP-1 levels between the uninfected and infected groups. There was an increase in the expression of both MMP-2 and MMP-9 in the kidneys of immunocompetent and immunosuppressed mice infected with Acanthamoeba spp. compared to the uninfected mice. The results indicate that KIM-1, NGAL, MCP-1, MMP-2, MMP-9, and MMP-9/NGAL might be promising biomarkers of renal acanthamoebiasis.


Sign in / Sign up

Export Citation Format

Share Document