Adults’ Markers of Face Processing Are Present at Age 6 and Are Interconnected Along Development

Perception ◽  
2018 ◽  
Vol 47 (10-11) ◽  
pp. 1002-1028 ◽  
Author(s):  
Elite Mardo ◽  
Galia Avidan ◽  
Bat-Sheva Hadad

Recent studies on the development of face processing argue for a late, quantitative, domain-specific development of face processing, and face memory in particular. Most previous findings were based on separately tracking the developmental course of face perception skills, comparing performance across different age groups. Here, we adopted a different approach studying the mechanisms underlying the development of face processing by focusing on how different face skills are interrelated over the years (age 6 to adulthood). Specifically, we examined correlations within and between different categories of tasks: face domain-specific skills involving face recognition based on long-term representations (famous face), and short-term memory retention (Cambridge Face Memory Test), perceptual face-specific marker (inversion effect), global effects in scene perception (global–local task), and the perception of facial expressions. Factor analysis revealed that face identity skills have a similar pattern of interrelations throughout development, identifying two factors: a face domain-specific factor comprising adultlike markers of face processing and a general factor incorporating related, but nonspecific perceptual skills. Domain-specific age-related changes in face recognition entailing short- and long-term retention of face representations were observed, along with mature perceptual face-specific markers and more general perceptual effects predicting face perception skills already at age 6. The results suggest that the domain-specific changes in face processing are unlikely to result from developmental changes in perceptual skills driving face recognition. Instead, development may either involve improvement in the ability to retain face representations in memory or changes in the interactions between the perceptual representations of faces and their representations in long-term memory.

2019 ◽  
Vol 9 (6) ◽  
pp. 133 ◽  
Author(s):  
Sarah Bate ◽  
Rachel J. Bennetts ◽  
Nicola Gregory ◽  
Jeremy J. Tree ◽  
Ebony Murray ◽  
...  

In the last 15 years, increasing numbers of individuals have self-referred to research laboratories in the belief that they experience severe everyday difficulties with face recognition. The condition “developmental prosopagnosia” (DP) is typically diagnosed when impairment is identified on at least two objective face-processing tests, usually involving assessments of face perception, unfamiliar face memory, and famous face recognition. While existing evidence suggests that some individuals may have a mnemonic form of prosopagnosia, it is also possible that other subtypes exist. The current study assessed 165 adults who believe they experience DP, and 38% of the sample were impaired on at least two of the tests outlined above. While statistical dissociations between face perception and face memory were only observed in four cases, a further 25% of the sample displayed dissociations between impaired famous face recognition and intact short-term unfamiliar face memory and face perception. We discuss whether this pattern of findings reflects (a) limitations within dominant diagnostic tests and protocols, (b) a less severe form of DP, or (c) a currently unrecognized but prevalent form of the condition that affects long-term face memory, familiar face recognition or semantic processing.


2017 ◽  
Author(s):  
Christel Devue ◽  
Gina M. Grimshaw

Individuals show astonishing variability in their face recognition abilities, and the causes and consequences of this heterogeneity are unclear. Special expertise with faces, for example in portraitists, is associated with advantages on face processing tasks, especially those involving perceptual abilities. Do face processing skills improve through practice, or does drawing skill reflect pre-existing individual differences? If the latter, then the association between face processing skills and production of faithful portraits should also exist in people without practice in drawing. Two exploratory studies and one follow-up confirmatory study provide support for this hypothesis. Drawing ability of novices was predicted by their performance on face recognition tasks involving perceptual discrimination and visual short term memory, but not by those that rely more heavily on long term memory or memory for non-face objects. By examining non-experts, we show that expertise with faces might build upon pre-existing individual differences in face processing skills.


2021 ◽  
Author(s):  
◽  
Ella Macaskill

<p>Face recognition is a fundamental cognitive function that is essential for social interaction – yet not everyone has it. Developmental prosopagnosia is a lifelong condition in which people have severe difficulty recognising faces but have normal intellect and no brain damage. Despite much research, the component processes of face recognition that are impaired in developmental prosopagnosia are not well understood. Two core processes are face perception, being the formation of visual representations of a currently seen face, and face memory, being the storage, maintenance, and retrieval of those representations. Most studies of developmental prosopagnosia focus on face memory deficits, but a few recent studies indicate that face perception deficits might also be important. Characterising face perception in developmental prosopagnosia is crucial for a better understanding of the condition. In this thesis, I addressed this issue in a large-scale experiment with 108 developmental prosopagnosics and 136 matched controls. I assessed face perception abilities with multiple measures and ran a broad range of analyses to establish the severity, scope, and nature of face perception deficits in developmental prosopagnosia. Three major results stand out. First, face perception deficits in developmental prosopagnosia were severe, and could be comparable in size to face memory deficits. Second, the face perception deficits were widespread, affecting the whole sample rather than a subset of individuals. Third, the deficits were mainly driven by impairments to mechanisms specialised for processing upright faces. Further analyses revealed several other features of the deficits, including the use of atypical and inconsistent strategies for perceiving faces, difficulties matching the same face across different pictures, equivalent impact of lighting and viewpoint variations in face images, and atypical perceptual and non-perceptual components of test performance. Overall, my thesis shows that face perception deficits are more central to developmental prosopagnosia than previously thought and motivates further research on the issue.</p>


Author(s):  
Kai Essig ◽  
Oleg Strogan ◽  
Helge Ritter ◽  
Thomas Schack

Various computational models of visual attention rely on the extraction of salient points or proto-objects, i.e., discrete units of attention, computed from bottom-up image features. In recent years, different solutions integrating top-down mechanisms were implemented, as research has shown that although eye movements initially are solely influenced by bottom-up information, after some time goal driven (high-level) processes dominate the guidance of visual attention towards regions of interest (Hwang, Higgins & Pomplun, 2009). However, even these improved modeling approaches are unlikely to generalize to a broader range of application contexts, because basic principles of visual attention, such as cognitive control, learning and expertise, have thus far not sufficiently been taken into account (Tatler, Hayhoe, Land & Ballard, 2011). In some recent work, the authors showed the functional role and representational nature of long-term memory structures for human perceptual skills and motor control. Based on these findings, the chapter extends a widely applied saliency-based model of visual attention (Walther & Koch, 2006) in two ways: first, it computes the saliency map using the cognitive visual attention approach (CVA) that shows a correspondence between regions of high saliency values and regions of visual interest indicated by participants’ eye movements (Oyekoya & Stentiford, 2004). Second, it adds an expertise-based component (Schack, 2012) to represent the influence of the quality of mental representation structures in long-term memory (LTM) and the roles of learning on the visual perception of objects, events, and motor actions.


2020 ◽  
pp. 150-174 ◽  
Author(s):  
André Vandierendonck

The working memory model with distributed executive control accounts for the interactions between working memory and multi-tasking performance. The working memory system supports planned actions by relying on two capacity-limited domain-general and two time-limited domain-specific modules. Domain-general modules are the episodic buffer and the executive module. The episodic buffer stores multimodal representations and uses attentional refreshment to counteract information loss and to consolidate information in episodic long-term memory. The executive module maintains domain-general information relevant for the current task. The phonological buffer and the visuospatial module are domain specific; the former uses inner speech to maintain and to rehearse phonological information, whereas the latter holds visual and spatial representations active by means of image revival. For its operation, working memory interacts with declarative and procedural long-term memory, gets input from sensory registers, and uses the motor system for output.


2019 ◽  
Vol 6 (1) ◽  
pp. 181350
Author(s):  
G. Meinhardt ◽  
B. Meinhardt-Injac ◽  
M. Persike

Numerous studies have reported impairments in perception and recognition, and, particularly, in part-integration of faces following picture-plane inversion. Whether these findings support the notion that inversion changes face processing qualitatively remains a topic of debate. To examine whether associations and dissociations of the human face processing ability depend on stimulus orientation, we measured face recognition with the Cambridge Face Memory Test (CFMT), along with experimental tests of face perception and selective attention to faces and non-face objects in a sample of 314 participants. Results showed strong inversion effects for all face-related tasks, and modest ones for non-face objects. Individual differences analysis revealed that the CFMT shared common variance with face perception and face-selective attention, however, independent of orientation. Regardless of whether predictor and criterion had same or different orientation, face recognition was best predicted by the same test battery. Principal component decomposition revealed a common factor for face recognition and face perception, a second common factor for face recognition and face-selective attention, and two unique factors. The patterns of factor loadings were nearly identical for upright and inverted presentation. These results indicate orientation-invariance of common variance in three domains of face processing. Since inversion impaired performance, but did not affect domain-related associations and dissociations, the findings suggest process-specific but orientation-general mechanisms. Specific limitations by constraints of individual differences analysis and test selection are discussed.


2002 ◽  
Vol 13 (2) ◽  
pp. 190-193 ◽  
Author(s):  
Shlomo Bentin ◽  
Noam Sagiv ◽  
Axel Mecklinger ◽  
Angela Friederici ◽  
Yves D. von Cramon

Accumulated evidence from electrophysiology and neuroimaging suggests that face perception involves extrastriate visual mechanisms specialized in processing physiognomic features and building a perceptual representation that is categorically distinct and can be identified by face-recognition units. In the present experiment, we recorded event-related brain potentials in order to explore possible contextual influences on the activity of this perceptual mechanism. Subjects were first exposed to pairs of small shapes, which did not elicit any face-specific brain activity. The same stimuli, however, elicited face-specific brain activity after subjects saw them embedded in schematic faces, which probably primed the subjects to interpret the shapes as schematic eyes. No face-specific activity was observed when objects rather than faces were used to form the context. We conclude that the activity of face-specific extrastriate perceptual mechanisms can be modulated by contextual constraints that determine the significance of the visual input.


Sign in / Sign up

Export Citation Format

Share Document