Biomechanical responses of young adults with unilateral transfemoral amputation using two types of mechanical stance control prosthetic knee joints

2020 ◽  
Vol 44 (5) ◽  
pp. 314-322
Author(s):  
Jan Andrysek ◽  
Daniela García ◽  
Claudio Rozbaczylo ◽  
Carlos Alvarez-Mitchell ◽  
Rebeca Valdebenito ◽  
...  

Background: Prosthetic knee joint function is important in the rehabilitation of individuals with transfemoral amputation. Objectives: The objective of this study was to assess the gait patterns associated with two types of mechanical stance control prosthetic knee joints—weight-activated braking knee and automatic stance-phase lock knee. It was hypothesized that biomechanical differences exist between the two knee types, including a prolonged swing-phase duration and exaggerated pelvic movements for the weight-activated braking knee during gait. Study design: Prospective crossover study. Methods: Spatiotemporal, kinematic, and kinetic parameters were obtained via instrumented gait analysis for 10 young adults with a unilateral transfemoral amputation. Discrete gait parameters were extracted based on their magnitudes and timing. Results: A 1.01% ± 1.14% longer swing-phase was found for the weight-activated braking knee (p < 0.05). The prosthetic ankle push-off also occurred earlier in the gait cycle for the weight-activated braking knee. Anterior pelvic tilt was 3.3 ± 3.0 degrees greater for the weight-activated braking knee. This range of motion was also higher (p < 0.05) and associated with greater hip flexion angles. Conclusions: Stance control affects biomechanics primarily in the early and late stance associated with prosthetic limb loading and unloading. The prolonged swing-phase time for the weight-activated braking knee may be associated with the need for knee unloading to initiate knee flexion during gait. The differences in pelvic tilt may be related to knee stability and possibly the different knee joint stance control mechanisms. Clinical relevance Understanding the influence of knee function on gait biomechanics is important in selecting and improving treatments and outcomes for individuals with lower-limb amputations. Weight-activated knee joints may result in undesired gait deviations associated with stability in early stance-phase, and swing-phase initiation in the late stance-phase of gait.

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Ismi Dwi Syafitri ◽  
Nur Rachmat

Abstract : Transfemoral Amputasi, Transfemoral Prosthesis, Polycentric Knee Joint. World Health Organization (WHO) estimated that there are 40 million amputees throughout the developing countries. Amputation in the lower limbs reached 85% -90% of all amputations. Transfemoral amputation because of this amputation occurs in the thigh that passed through the femur bone. Amputation causes significant gait abnormalities. amputation levels increased, the functional level is reduced, and the characteristic of the gait abnormality is immediately apparent. Transfemoral Prosthesis is artificial limb that made for above knee amputation. making process of transfemoral prosthesis includes assessment, measurement, casting, fabrication, fitting, finishing. Of all components for transfemoral patients, prosthetic knee joints are the most important components that can affect to gait stability. The choice for the type of popular passive knee mechanism is polycentric knee. The polycentric knee joint mechanism, linkage of 4 and 6 bar mechanisms have been used to increase stability during the stance and kinematic phase of the swing phase.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Jan Andrysek ◽  
Matthew J. Leineweber ◽  
Hankyu Lee

Stance-control orthotic knee joints stabilize the knee joint during the weight-bearing portion of gait without restricting swing-phase flexion, thus achieving a more normal gait for individuals with quadriceps muscle weakness. These devices must be designed around well-defined stance-control strategies that enable or hinder joint motion at specific events during the gait cycle. This paper presents a new type of stance-control strategy and a novel stance-controller design. Pilot clinical testing was performed on a prototype, demonstrating feasibility of this approach for providing reliable knee stability while facilitating swing-phase flexion. In particular, 44 deg of swing-phase flexion and 15 deg of stance-phase flexion were achieved during level walking. Further testing is needed in situ to provide additional validation and assess other mobility conditions.


2013 ◽  
Vol 29 (4) ◽  
pp. 474-480 ◽  
Author(s):  
Jan Andrysek ◽  
Susan Klejman ◽  
John Kooy

The goal of this study was to investigate clinically relevant biomechanical conditions relating to the setup and alignment of knee-ankle-foot orthoses and the influence of these conditions on knee extension moments and orthotic stance control during gait. Knee moments were collected using an instrumented gait laboratory and concurrently a load transducer embedded at the knee-ankle-foot orthosis knee joint of four individuals with poliomyelitis. We found that knee extension moments were not typically produced in late stance-phase of gait. Adding a dorsiflexion stop at the orthotic ankle significantly decreased the knee flexion moments in late stance-phase, while slightly flexing the knee in stance-phase had a variable effect. The findings suggest that where users of orthoses have problems initiating swing-phase flexion with stance control orthoses, an ankle dorsiflexion stop may be used to enhance function. Furthermore, the use of stance control knee joints that lock while under flexion may contribute to more inconsistent unlocking of the stance control orthosis during gait.


2019 ◽  
Vol 66 (4) ◽  
pp. 1184-1192 ◽  
Author(s):  
Jan Andrysek ◽  
Jessica Tomasi ◽  
Matthew Leineweber ◽  
Arezoo Eshraghi

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hiroshige Tateuchi ◽  
Haruhiko Akiyama ◽  
Koji Goto ◽  
Kazutaka So ◽  
Yutaka Kuroda ◽  
...  

Abstract Background A larger daily cumulative hip loading, which is the product of the external hip adduction moment (HAM) impulse during gait and the number of steps per day has been identified as a factor associated with the progression of secondary hip osteoarthritis (OA). The cause of the increased HAM impulse in patients with hip OA has not been identified. The purpose of this study was to identify the gait parameters associated with HAM impulse during gait in patients with secondary hip OA. Methods Fifty-five patients (age 22–65 years) with mild-to-moderate secondary hip OA participated in this cross-sectional study. The HAM impulse during gait was measured using a three-dimensional gait analysis system. To identify the gait parameters associated with HAM impulse, hierarchical multiple regression analysis was performed. The first model (basic model) included body weight and stance phase duration. The second models included gait parameters (gait speed; ground reaction force [GRF] in frontal plane; and hip, pelvic, and trunk angle in frontal plane) and hip pain in addition to the basic model. Results Body weight and stance phase duration explained 61% of the variance in HAM impulse. In the second model, which took into account body weight and stance phase duration, hip adduction angle (9.4%), pelvic tilt (6.5%), and trunk lean (3.2%) in addition to GRF explained the variance in the HAM impulse. Whereas larger hip adduction angle and pelvic tilt toward the swing limb were associated with a larger HAM impulse, larger trunk lean toward the stance limb was associated with smaller HAM impulse. Conclusion In patients with excessive hip adduction and pelvic tilt toward the swing limb during gait, gait modification may contribute to the reduction of hip joint loading.


Author(s):  
Jonathan A. Gacioch ◽  
Kevin B. Fite ◽  
Adam K. Arabian ◽  
Toshiki Kobayashi ◽  
David A. Boone ◽  
...  

The work presented here details the development of a wireless instrumentation architecture for direct gait measurement in a transfemoral prosthesis. The system comprises a pair of multi-axis load cells located proximal to the ankle and knee joints of the prosthesis that provide a measure of moments and axial force above and below the prosthetic knee. The kinetic measurements are supplemented with knee kinematics measured using a modular goniometer attached lateral to the prosthetic knee and ground contact as indicated with a pneumatic sensor at the prosthetic heel. Each instrument wirelessly transmits collected data to host PCs, enabling direct gait measurements free of the constraints of a conventional gait laboratory setting. The data acquisition system was evaluated with a single subject with unilateral transfemoral amputation walking with a polycentric knee, composite energy-return foot, and daily-use socket. Experimental results were collected for the subject walking through a theater, enabling the rapid acquisition of gait data for level-ground walking and incline ascent/descent without the need for a motion-capture camera array or floor-embedded force plates.


2008 ◽  
Vol 32 (1) ◽  
pp. 84-92 ◽  
Author(s):  
F. Jepson ◽  
D. Datta ◽  
I. Harris ◽  
B. Heller ◽  
J. Howitt ◽  
...  

The Adaptive® knee joint is a microprocessor-controlled prosthetic knee that incorporates both pneumatic and hydraulic control in one electronic unit. Pneumatic control is said to provide control during swing phase and the hydraulic control during the stance phase of the gait. This hybrid controller is triggered by a computer contained within the knee that responds to input from force, time and angle sensors. The microprocessor then selects an appropriate speed and stability setting. The Catech® knee joint is a conventional hydraulic knee joint. The aim of this study was to compare the Adaptive® and Catech® knee joints in established trans-femoral amputees. The patients meeting the inclusion criteria were all established trans-femoral amputees using the Catech® knee joint. The study was carried out by performing gait analysis, assessing energy requirements using the Physiological Cost Index (PCI) and using questionnaires. There was no significant benefit gained from the use of the Adaptive® knee over the Catech® knee joint in our small study group.


Medicina ◽  
2019 ◽  
Vol 55 (12) ◽  
pp. 756
Author(s):  
Takashi Fukaya ◽  
Hirotaka Mutsuzaki ◽  
Koichi Mori

Background and Objectives: The purpose of this study was to compare the side-to-side differences in knee joint movement and moment for the degree of pain in the walking stance phase in patients with bilateral knee osteoarthritis (KOA) of comparable severity. We hypothesized that knee joint movement and moment on the side with strong pain were lower compared with the side with weak pain. Materials and Methods: We included 11 patients diagnosed with bilateral severe KOA. In all patients’ left and right knees, the Kellgren–Lawrence radiographic scoring system grade was level 4, and the femorotibial angle and knee range of motion were equivalent. Following patients’ interviews with an orthopedic surgeon, we performed a comparative study with KOA with strong pain (KOAs) as the strong painful side and KOA with weak pain (KOAw) as the weak painful side. Data for changes in bilateral knee joint angles in three dimensions during the stance phase and bilateral knee sagittal and frontal moments exerted in the early and late stance phases were extracted from kinematics and kinetics analyses. Results: Three-dimensional joint movements in the knee joint were not significantly different in all phases between KOAs and KOAw. Knee extensor moment in the early stance phase in KOAs was significantly smaller than that in KOAw. Knee abductor moment in the early and late stance phase was not significantly different between KOAs and KOAw. Conclusions: Although we found no difference in joint motion in bilateral knee joints, knee extensor moment on the side with strong pain was decreased. In patients with bilateral severe KOA, it was suggested that the magnitude of knee pain contributed to the decrease in knee joint function.


1997 ◽  
Vol 78 (6) ◽  
pp. 3047-3060 ◽  
Author(s):  
Miriam A. Ashley-Ross ◽  
George V. Lauder

Ashley-Ross, Miriam A. and George V. Lauder. Motor patterns and kinematics during backward walking in the Pacific Giant Salamander: evidence for novel motor output. J. Neurophysiol. 78: 3047–3060, 1997. Kinematic and motor patterns during forward and backward walking in the salamander Dicamptodon tenebrosus were compared to determine whether the differences seen in mammals also apply to a lower vertebrate with sprawling posture and to measure the flexibility of motor output by tetrapod central pattern generators. During treadmill locomotion, electromyograms (EMGs) were recorded from hindlimb muscles of Dicamptodon while simultaneous high-speed video records documented movement of the body, thigh, and crus and allowed EMGs to be synchronized to limb movements. In forward locomotion, the trunk was lifted above the treadmill surface. The pelvic girdle and trunk underwent smooth side-to-side oscillations throughout the stride. At the beginning of the stance phase, the femur was protracted and the knee joint extended. The knee joint initially flexed in early stance and then extended as the foot pushed off in late stance, reaching maximum extension just before foot lift-off. The femur retracted steadily throughout the stance. In the swing phase, the femur rapidly protracted, and the leg was brought forward in an “overhand crawl” motion. In backward walking, the body frequently remained in contact with the treadmill surface. The pelvic girdle, trunk, and femur remained relatively still during stance phase, and most motion occurred at the knee joint. The knee joint extended throughout most of stance, as the body moved back, away from the stationary foot. The knee flexed during swing. Four of five angles showed significantly smaller ranges in backward than in forward walking. EMGs of forward walking showed that ventral muscles were coactive, beginning activity just before foot touchdown and ceasing during the middle of stance phase. Dorsal muscles were active primarily during swing. Backward locomotion showed a different pattern; all muscles except one showed primary activity during the swing phase. This pattern of muscle synergy in backward walking never was seen in forward locomotion. Also, several muscles demonstrated lower burst rectified integrated areas (RIA) or durations during backward locomotion. Multivariate statistical analysis of EMG onset and RIA completely separated forward and backward walking along the first principal component, based on higher RIAs, longer durations of muscle activity, and greater synergy between ventral muscles during early stance in forward walking. Backward walking in Dicamptodon uses a novel motor pattern not seen during forward walking in salamanders or during any other locomotor activity in previously studied tetrapods. The central neuronal mechanisms mediating locomotion in this primitive tetrapod are thus capable of considerable plasticity.


Sign in / Sign up

Export Citation Format

Share Document