A First Investigation of Truck Drivers’ Preferences and Behaviors using a Prototype Cooperative Adaptive Cruise Control System

Author(s):  
Shiyan Yang ◽  
Steven E. Shladover ◽  
Xiao-Yun Lu ◽  
Hani Ramezani ◽  
Aravind Kailas ◽  
...  

Cooperative adaptive cruise control (CACC) is a driver-assist technology that uses vehicle-to-vehicle wireless communication to realize faster braking responses in following vehicles and shorter headways compared with adaptive cruise control. This technology not only enhances road safety, but also offers fuel savings benefits as a result of reduced aerodynamic drag. The amount of fuel savings is dictated by the following distances and the driving speeds. So, the overarching goal of this work is to explore driving preferences and behaviors when following in “CACC mode,” an area that remains largely unexplored. While in CACC mode, the brake and throttle actions are automated. A human factors study was conducted to investigate truck drivers’ experiences and performance using CACC at shorter-than-normal vehicle following time gaps. “On-the-road” experiments were conducted by recruiting drivers from commercial fleets to operate the second and third trucks in a three-truck CACC string. The driving route spanned 160 miles on freeways in Northern California and five different time gaps between 0.6 and 1.8 seconds were tested. Factors such as cut-ins by other vehicles, road grades, and traffic conditions were found to influence the drivers’ opinions about use of CACC. The findings presented in this paper provide insights into the factors that will influence driver reactions to the deployment of CACC in their truck fleets.

Author(s):  
Jan-Niklas Meier ◽  
Aravind Kailas ◽  
Oubada Abuchaar ◽  
Maher Abubakr ◽  
Rawa Adla ◽  
...  

This paper focuses on evaluating, in a structured manner, the potential benefits, along with the implementation and performance issues, of utilizing dedicated short range communication-based communication in conjunction with adaptive cruise control (ACC) systems. This work was done in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC and the Federal Highway Administration. Designing cooperative adaptive cruise control (CACC) as an extension of ACC, and by using a combination of a comprehensive simulation framework and test vehicles, benefits of vehicular communication on string stability were established, and the performance of the novel CACC-enabling software modules were validated. Another key contribution of this work is the consideration of vehicles with different dynamic responses as a part of a single string. Four light-duty vehicles (hatchback, mid- and full-size sedans, large SUV), each from a different automotive original equipment manufacturer, were retrofitted with common ACC and vehicular communication systems. They were tested under many different conditions to obtain performance data (such as radar sensor readings, etc.) when operating in a vehicle string. These data were then integrated into the simulation environment to develop and validate the CACC modules. The paper concludes with a recommendation of some data elements for over-the-air messages to enable CACC functionality.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yanfeng Jia ◽  
Dayi Qu ◽  
Xiaolong Ma ◽  
Lu Lin ◽  
Jiale Hong

The vehicle-following behavior is a self-organizing behavior that restores dynamic balance under the stimulation of external environmental factors. In fact, there are asymmetric problems in the process of acceleration and deceleration of drivers. The existing traditional models ignored the differences between acceleration and deceleration of vehicles. In order to solve this problem, the vehicles driving on the road are compared to interacting molecules. Vehicle-following characteristics are studied, and the molecular following model is established based on molecular dynamics. The model parameters under different conditions are calibrated considering the required safety distance by the vehicle and the reaction time of the driver. With the help of the vehicle running track graphs, speed, and acceleration graphs, the numerical simulations of the molecular following model and the classical optimal speed vehicle-following model are carried out. The results of the comparative analysis show that the acceleration in the process of acceleration and deceleration is not constant but more sensitive to the deceleration of the preceding vehicle than to the acceleration and more sensitive to the acceleration/deceleration of the short-distance vehicle than to the acceleration/deceleration of the long-distance vehicle. Therefore, the molecular following model can better describe the vehicle-following behavior, and the research results can provide a theoretical basis and a technical reference for the analysis of traffic flow dynamic characteristics and adaptive cruise control technology.


Author(s):  
Colleen Serafin

This study investigated driver preferences for labels of adjustable distance controls for an adaptive cruise control (ACC) system. Thirty-six participants were introduced to the concept of ACC by using a computer prototype of an ACC system. Participants were asked to provide their preferences for labels for two types of adjustable distance controls: one type that adjusts both speed and distance (shared controls) and another that adjusts only distance (separate control). For shared controls, participants preferred the labels ACC/DEC over ‘+/-’ and ACC/COAST. The labels preferred for the separate control were NEAR/FAR as opposed to symbols (arrows or chevrons). Due to some confusion that may arise from the abbreviations on the shared controls, additional investigations into appropriate labels, with the emphasis on international use (i.e., symbols), are recommended. Finally, because these preferences were obtained through the use of a computer prototype of ACC, usability tests should be conducted on the road to validate the results.


Author(s):  
Mark Trudgen ◽  
Javad Mohammadpour

In this paper, we design and validate a robust H∞ controller for Cooperative Adaptive Cruise Control (CACC) in connected vehicles. CACC systems take advantage of onboard sensors and wireless technologies working together in order to achieve smaller inter-vehicle following distances, with the overall goal of increasing vehicle throughput on busy highways, and hence serving as a viable approach to reduce traffic congestion. A group of connected vehicles equipped with CACC technology must also ensure what is known as string stability. This requirement effectively dictates that disturbances should be attenuated as they propagate along the platoon of following vehicles. In order to guarantee string stability and to cope with the uncertainties seen in the vehicle model used for a model-based CACC, we propose to design and implement a robust H∞ controller. Loop shaping design methodology is used in this paper to achieve desired tracking characteristics in the presence of competing string stability, robustness and performance requirements. We then employ model reduction techniques to reduce the order of the controller and finally implement the reduced-order controller on a simulation model demonstrating the robust properties of the closed-loop system.


Author(s):  
Rajesh Kumar Gupta ◽  
L. N. Padhy ◽  
Sanjay Kumar Padhi

Traffic congestion on road networks is one of the most significant problems that is faced in almost all urban areas. Driving under traffic congestion compels frequent idling, acceleration, and braking, which increase energy consumption and wear and tear on vehicles. By efficiently maneuvering vehicles, traffic flow can be improved. An Adaptive Cruise Control (ACC) system in a car automatically detects its leading vehicle and adjusts the headway by using both the throttle and the brake. Conventional ACC systems are not suitable in congested traffic conditions due to their response delay.  For this purpose, development of smart technologies that contribute to improved traffic flow, throughput and safety is needed. In today’s traffic, to achieve the safe inter-vehicle distance, improve safety, avoid congestion and the limited human perception of traffic conditions and human reaction characteristics constrains should be analyzed. In addition, erroneous human driving conditions may generate shockwaves in addition which causes traffic flow instabilities. In this paper to achieve inter-vehicle distance and improved throughput, we consider Cooperative Adaptive Cruise Control (CACC) system. CACC is then implemented in Smart Driving System. For better Performance, wireless communication is used to exchange Information of individual vehicle. By introducing vehicle to vehicle (V2V) communication and vehicle to roadside infrastructure (V2R) communications, the vehicle gets information not only from its previous and following vehicle but also from the vehicles in front of the previous Vehicle and following vehicle. This enables a vehicle to follow its predecessor at a closer distance under tighter control.


Sign in / Sign up

Export Citation Format

Share Document