Vehicle Consumer Complaint Reports Involving Severe Incidents: Mining Large Contingency Tables

Author(s):  
Subasish Das ◽  
Abhisek Mudgal ◽  
Anandi Dutta ◽  
Srinivas R. Geedipally

According to 2010–2014 Fatality Analysis Reporting System (FARS) data, nearly 6.35% of fatal crashes happened as a result of vehicles’ pre-existing manufacturing defects. The National Highway Traffic Safety Administration’s (NHTSA) vehicle complaint database incorporates more than 1.37 million complaint reports (as of June 1, 2017). These reports contain extended information on vehicle-related disruptions. Around 5% of these reports involve some level of injury or fatalities. This study had two principal objectives, namely (1) perform knowledge discovery to understand the latent trends in consumer complaints, and (2) identify clusters with high relative reporting ratios from a large contingency table of vehicle models and associated complaints. To accomplish these objectives, 67,201 detailed reports associated with injury or fatalities from the NHTSA vehicle complaint database were examined. Exploratory text mining and empirical Bayes (EB) data mining were performed. Additionally, this study analyzed five years (2010–2014) of FARS data to examine the research findings. Results show that major vehicular defects are associated with air bags, brake systems, seat belts, and speed controls. The EB metrics identified several key ‘ vehicle model with major defect’ groups that require more attention. This study demonstrates the applicability of consumer complaints in identifying major vehicular defects as well as key groups of ‘ vehicle model with major defect.’ The findings of this study will provide a significant contribution to the reduction of crashes from vehicle-related disruptions. The research presented in this paper is crucial given the ongoing advancement of connected and automated vehicle technologies.

Author(s):  
Subasish Das ◽  
Srinivas R. Geedipally ◽  
Karen Dixon ◽  
Xiaoduan Sun ◽  
Chaolun Ma

The National Highway Traffic Safety Administration’s (NHTSA) guideline on state motor vehicle inspection programs recommends that states should maintain a vehicle safety inspection program to reduce the crash outcomes from the number of vehicles with existing or potential conditions. Some states have started to terminate the vehicle safety inspection program because of insufficient effectiveness measures, budget constraints, and modern safer automobiles. Despite the consensus that these periodic inspection programs improve vehicle condition and improve safety, research remains inconclusive about the effect of safety inspection programs on crash outcomes. There is little recent research on the relationship between vehicle safety inspection programs and whether these programs reduce crash rates or crash severities. According to the 2011–2016 Fatality Analysis Reporting System (FARS) data, nearly 2.6% of fatal crashes happened as a result of the vehicle’s pre-existing manufacturing defects. NHTSA’s vehicle complaint database incorporates more than 1.4 million complaint reports. These reports contain extended information on vehicle-related disruptions. Around 5% of these reports involve some level of injury or fatalities. This study used these two databases to determine the effectiveness of vehicle inspection regulation programs in different states of the U.S. A statistical significance test was performed to determine the effectiveness of the vehicle safety inspection programs based on the states with and without safety inspection in place. This study concludes that there is a need for vehicle safety inspections to be continued for the reduction of vehicle complaints.


2007 ◽  
Vol 35 (2) ◽  
pp. 70-93
Author(s):  
Marion G. Pottinger ◽  
Joseph D. Walter ◽  
John D. Eagleburger

Abstract The Congress of the United States petitioned the Transportation Research Board of the National Academy of Sciences to study replacement passenger car tire rolling resistance in 2005 with funding from the National Highway Traffic Safety Administration. The study was initiated to assess the potential for reduction in replacement tire rolling resistance to yield fuel savings. The time required to realize these savings is less than the time required for automotive and light truck fleet replacement. Congress recognized that other factors besides fuel savings had to be considered if the committee’s advice was to be a reasonable guide for public policy. Therefore, the study simultaneously considered the effect of potential rolling resistance reductions in replacement tires on fuel consumption, wear life, scrap tire generation, traffic safety, and consumer spending for tires and fuel. This paper summarizes the committee’s report issued in 2006. The authors, who were members of the multidisciplinary committee, also provide comments regarding technical difficulties encountered in the committee’s work and ideas for alleviating these difficulties in further studies of this kind. The authors’ comments are clearly differentiated so that these comments will not be confused with findings, conclusions, and recommendations developed by the committee and contained in its final report.


1981 ◽  
Vol 9 (1) ◽  
pp. 19-25 ◽  
Author(s):  
G. S. Ludwig ◽  
F. C. Brenner

Abstract Belted bias and radial Course Monitoring Tires were run over the National Highway Traffic Safety Administration tread wear course at San Angelo on a vehicle instrumented to measure lateral and longitudinal accelerations, speed, and number of wheel rotations. The data were recorded as histograms. The distribution of speed, the distributions of lateral and longitudinal acceleration, and the number of acceleration level crossings are given. Acceleration data for segments of the course are also given.


2011 ◽  
Vol 332-334 ◽  
pp. 1162-1166
Author(s):  
Zhuo Zhang ◽  
Ying Qing Liu ◽  
Zhong Hai Ren ◽  
Jia Zhuang Ma ◽  
Hu Shui Ye

The flammability is one of the most important features about safety for automotive interior material. This paper summarized the testing standards for flammability performed testing on a type of interior textile material made by one of domestic manufacturers, in accordance with the Chart 571.302 Standard No. 302 of the National Highway Traffic Safety Administration of U.S. The complete introduction of national mandatory standard of China in flammability of interior material was introduced and domestic test standards of flammability with those of foreign countries all over world were compared. Finally, this paper proposed possible and would-be necessary parameters based on comprehensiveness of this kind of test due to safer requirement in future.


1996 ◽  
Vol 11 (S2) ◽  
pp. S41-S41
Author(s):  
John E. Gough ◽  
Richard C. Hunt

Purpose: To determine the most frequent sources of injuries from the interior of motor vehicles involved in crashes.Methods: We searched the National Highway Traffic Safety Administration's National Accident Sampling System to determine the most frequent sources of injuries. This database includes sources of injuries resulting from crashes from January 1, 1991 to December 31, 1992.


Author(s):  
Frederik Naujoks ◽  
Sebastian Hergeth ◽  
Katharina Wiedemann ◽  
Nadja Schömig ◽  
Andreas Keinath

Reflecting the increasing demand for harmonization of human machine interfaces (HMI) of automated vehicles, different taxonomies of use cases for investigating automated driving systems (ADS) have been proposed. Existing taxonomies tend to serve specific purposes such as categorizing transitions between automation modes; however, they cannot be generalized to different systems or combinations of systems. In particular, there is no exhaustive set of use cases that allows entities to assess and validate the HMI of a given ADS that takes into account all possible system modes and transitions. The present paper describes a newly developed framework based on combinatorics of SAE (Society of Automotive Engineers) automation levels that incorporates a comprehensive taxonomy of use cases required for the assessment and validation of ADS HMIs. This forms a much-needed basis for test methods required to verify whether an HMI meets minimum requirements such as those outlined in the National Highway Traffic Safety Administration’s Federal Automated Vehicles policy.


Author(s):  
Jerry S. Ogden

Analysis of vehicle deformation from impacts largely relies upon A and B stiffness coefficients for vehicle structures in order to approximate the velocity change and accelerations produced by an impact. While frontal impact stiffness factors for passenger vehicles, light trucks, vans, and sport utility vehicles are relatively prevalent for modern vehicles, stiffness factors for rear and side structures, as well as heavy vehicles, buses, recreational vehicles, trailers, motorcycles, and even objects, are essentially non-existent. This paper presents the application of the Generalized Deformation and Total Velocity Change Analysis to real-world collision events (G-DaTA?V™ System of Equations) as developed by this author. The focus of this paper addresses the relative precision and accuracy of the G-DaTA?V™ System of Equations for determining the total velocity change for oblique and/or offset vehicle-to-vehicle collisions involving light trucks and sport utility vehicles, which are largely under-represented with modern vehicle A and B stiffness values for side and rear surfaces. The previous paper presented by this author to the Academy addressed the relative accuracy and precision of the G-DaTA?V™ System of Equations as they relate to a first validation using the RICSAC-staged collision database. As a secondary and more comprehensive validation process, the G-DaTA?V™ System of Equations will be applied to real-world collision data obtained through the National Automotive Sampling System (NASS), which provides the National Highway Traffic Safety Administration (NHTSA) with a comprehensive compilation of real-world collision events representing a broad-based collection of collision configurations from across the country. This data represents a reusable source of information that was collected using standardized field techniques implemented by NASS-trained field technicians. Through using a “core set of crash data components,” NASS has demonstrated its utility and applicability to a vast array of statistical and analytical studies regarding traffic safety and vehicle collision dynamics.


Sign in / Sign up

Export Citation Format

Share Document