Exploring Individual Activity-Travel Patterns Based on Geolocation Data from Mobile Phones

Author(s):  
Biao Yin ◽  
Fabien Leurent

Data mining techniques can extract useful activity and travel information from large-scale data sources such as mobile phone geolocation data. This paper aims to explore individual activity-travel patterns from samples of mobile phone users using a two-week geolocation data set from the Paris region in France. After filtering the data set, we propose techniques to identify individual stays and activity places. Typical activity places such as the primary anchor place and the secondary place are detected. The daily timeline (i.e., activity-travel program) is reconstructed with the detected activity places and the trips in-between. Based on user-day timelines, a three-stage clustering method is proposed for mobility pattern analysis. In the method framework, activity types are first identified by clustering analysis. In the second stage, daily mobility patterns are obtained after clustering the daily mobility features. Activity-travel topologies are statistically investigated to support the interpretation of daily mobility patterns. In the last stage, we analyze statistically the individual mobility patterns for all samples over 14 days, measured by the number of days for all kinds of daily mobility patterns. All individual samples are divided into several groups where people have similar travel behaviors. A kmeans++ algorithm is applied to obtain the appropriate number of patterns in each stage. Finally, we interpret the individual mobility patterns with statistical descriptions and reveal home-based differences in spatial distribution for the grouped individuals.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Esteban Moro ◽  
Dan Calacci ◽  
Xiaowen Dong ◽  
Alex Pentland

AbstractTraditional understanding of urban income segregation is largely based on static coarse-grained residential patterns. However, these do not capture the income segregation experience implied by the rich social interactions that happen in places that may relate to individual choices, opportunities, and mobility behavior. Using a large-scale high-resolution mobility data set of 4.5 million mobile phone users and 1.1 million places in 11 large American cities, we show that income segregation experienced in places and by individuals can differ greatly even within close spatial proximity. To further understand these fine-grained income segregation patterns, we introduce a Schelling extension of a well-known mobility model, and show that experienced income segregation is associated with an individual’s tendency to explore new places (place exploration) as well as places with visitors from different income groups (social exploration). Interestingly, while the latter is more strongly associated with demographic characteristics, the former is more strongly associated with mobility behavioral variables. Our results suggest that mobility behavior plays an important role in experienced income segregation of individuals. To measure this form of income segregation, urban researchers should take into account mobility behavior and not only residential patterns.


2020 ◽  
Vol 44 (5) ◽  
pp. 780-805 ◽  
Author(s):  
Jianwei Liu ◽  
Jinah Park ◽  
Karen Xie ◽  
Haiyan Song ◽  
Wei Chen

Commercial hosts are becoming increasingly common in peer-to-peer (P2P) accommodation sharing. Yet the interplay between commercial and individual hosts has been unclear. This study investigates the effect of properties managed by commercial hosts on the individual hosts in the neighborhood. Specifically, we hypothesize that an increase in commercial properties, which have competitive advantages, would penetrate neighborhood markets and cannibalize the online popularity of individual properties. We test these hypotheses using a large-scale, longitudinal data set collected from a leading P2P accommodation-sharing platform in Beijing. The findings show that an increase in commercial properties is associated with a decline in the popularity of individual properties in the neighborhood. However, the negative effect of commercial properties is weakened when there is a higher price difference between the two ownership types and a higher density of tourist attractions. The implications for service operations and strategies for P2P accommodation-sharing businesses are discussed.


1997 ◽  
Vol 1607 (1) ◽  
pp. 154-162 ◽  
Author(s):  
Ryuichi Kitamura ◽  
Cynthia Chen ◽  
Ram M. Pendyala

Microsimulation approaches to travel demand forecasting are gaining increased attention because of their ability to replicate the multitude of factors underlying individual travel behavior. The implementation of microsimulation approaches usually entails the generation of synthetic households and their associated activity-travel patterns to achieve forecasts with desired levels of accuracy. A sequential approach to generating synthetic daily individual activity-travel patterns was developed. The sequential approach decomposes the entire daily activity-travel pattern into various components, namely, activity type, activity duration, activity location, work location, and mode choice and transition. The sequential modeling approach offers practicality, provides a sound behavioral basis, and accurately represents an individual’s activity-travel patterns. In the proposed system each component may be estimated as a multinomial logit model. Models are specified to reflect potential associations between individual activity-travel choices and such factors as time of day, socioeconomic characteristics, and history dependence. As an example results for activity type choice models estimated and validated with the 1990 Southern California Association of Governments travel diary data set are provided. The validation results indicate that the predicted pattern of activity choices conforms with observed choices by time of day. Thus, realistic daily activity-travel patterns, which are requisites for microsimulation approaches, can be generated for synthetic households in a practical manner.


2017 ◽  
Vol 4 (5) ◽  
pp. 160950 ◽  
Author(s):  
Cecilia Panigutti ◽  
Michele Tizzoni ◽  
Paolo Bajardi ◽  
Zbigniew Smoreda ◽  
Vittoria Colizza

The recent availability of large-scale call detail record data has substantially improved our ability of quantifying human travel patterns with broad applications in epidemiology. Notwithstanding a number of successful case studies, previous works have shown that using different mobility data sources, such as mobile phone data or census surveys, to parametrize infectious disease models can generate divergent outcomes. Thus, it remains unclear to what extent epidemic modelling results may vary when using different proxies for human movements. Here, we systematically compare 658 000 simulated outbreaks generated with a spatially structured epidemic model based on two different human mobility networks: a commuting network of France extracted from mobile phone data and another extracted from a census survey. We compare epidemic patterns originating from all the 329 possible outbreak seed locations and identify the structural network properties of the seeding nodes that best predict spatial and temporal epidemic patterns to be alike. We find that similarity of simulated epidemics is significantly correlated to connectivity, traffic and population size of the seeding nodes, suggesting that the adequacy of mobile phone data for infectious disease models becomes higher when epidemics spread between highly connected and heavily populated locations, such as large urban areas.


2020 ◽  
Vol 9 (11) ◽  
pp. 666
Author(s):  
Chengming Li ◽  
Jiaxi Hu ◽  
Zhaoxin Dai ◽  
Zixian Fan ◽  
Zheng Wu

With the arrival of the big data era, mobile phone data have attracted increasing attention due to their rich information and high sampling rate. Currently, researchers have conducted various studies using mobile phone data. However, most existing studies have focused on macroscopic analysis, such as urban hot spot detection and crowd behavior analysis over a short period. With the development of the smart city, personal service and management have become very important, so microscopic portraiture research and mobility pattern of an individual based on big data is necessary. Therefore, this paper first proposes a method to depict the individual mobility pattern, and based on the long-term mobile phone data (from 2007 to 2012) of volunteers from Beijing as part of project Geolife conducted by Microsoft Research Asia, more detailed individual portrait depiction analysis is performed. The conclusions are as follows: (1) Based on high-density cluster identification, the behavior trajectories of volunteers are generalized into three types, and among them, the two-point-one-line trajectory and evenly distributed behavior trajectory were more prevalent in Beijing. (2) By integrating with Google Maps data, five volunteers’ behavior trajectories and the activity patterns of individuals were analyzed in detail, and a portrait depiction method for individual characteristics comprehensively considering their attributes, such as occupation and hobbies, is proposed. (3) Based on analysis of the individual characteristics of some volunteers, it is discovered that two-point-one-line individuals are generally white-collar workers working in enterprises or institutions, and the situation of a single cluster mainly exists among college students and home freelancer. The findings of this study are important for individual classification and prediction in the big data era and can also provide useful guidance for targeted services and individualized management of smart cities.


2008 ◽  
Vol 8 (2) ◽  
pp. 4561-4602 ◽  
Author(s):  
L. Hoffmann ◽  
M. Kaufmann ◽  
R. Spang ◽  
R. Müller ◽  
J. J. Remedios ◽  
...  

Abstract. From July 2002 to March 2004 the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Environmental Satellite (Envisat) measured nearly continuously mid infrared limb radiance spectra. These measurements are utilised to retrieve the global distribution of the chlorofluorocarbon CFC-11 by applying a new fast forward model for Envisat MIPAS and an accompanying optimal estimation retrieval processor. A detailed analysis shows that the total retrieval errors of the individual CFC-11 volume mixing ratios are typically below 10% and that the systematic components are dominating. Contribution of a priori information to the retrieval results are less than 5 to 10%. The vertical resolution of the observations is about 3 to 4 km. The data are successfully validated by comparison with several other space experiments, an air-borne in-situ instrument, measurements from ground-based networks, and independent Envisat MIPAS analyses. The retrieval results from 425 000 Envisat MIPAS limb scans are compiled to provide a new climatological data set of CFC-11. The climatology shows significantly lower CFC-11 abundances in the lower stratosphere compared with the Reference Atmospheres for MIPAS (RAMstan V3.1) climatology. Depending on the atmospheric conditions the differences between the climatologies are up to 30 to 110 ppt (45 to 150%) at 19 to 27 km altitude. Additionally, time series of CFC-11 mean abundance and variability for five latitudinal bands are presented. The observed CFC-11 distributions can be explained by the residual mean circulation and large-scale eddy-transports in the upper troposphere and lower stratosphere. The new CFC-11 data set is well suited for further scientific studies.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. G87-G100 ◽  
Author(s):  
Lorenzo Cascone ◽  
Chris Green ◽  
Simon Campbell ◽  
Ahmed Salem ◽  
Derek Fairhead

Geologic features, such as faults, dikes, and contacts appear as lineaments in gravity and magnetic data. The automated coherent lineament analysis and selection (ACLAS) method is a new approach to automatically compare and combine sets of lineaments or edges derived from two or more existing enhancement techniques applied to the same gravity or magnetic data set. ACLAS can be applied to the results of any edge-detection algorithms and overcomes discrepancies between techniques to generate a coherent set of detected lineaments, which can be more reliably incorporated into geologic interpretation. We have determined that the method increases spatial accuracy, removes artifacts not related to real edges, increases stability, and is quick to implement and execute. The direction of lower density or susceptibility can also be automatically determined, representing, for example, the downthrown side of a fault. We have evaluated ACLAS on magnetic anomalies calculated from a simple slab model and from a synthetic continental margin model with noise added to the result. The approach helps us to identify and discount artifacts of the different techniques, although the success of the combination is limited by the appropriateness of the individual techniques and their inherent assumptions. ACLAS has been applied separately to gravity and magnetic data from the Australian North West Shelf; displaying results from the two data sets together helps in the appreciation of similarities and differences between gravity and magnetic results and indicates the application of the new approach to large-scale structural mapping. Future developments could include refinement of depth estimates for ACLAS lineaments.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Takahiro Yabe ◽  
Satish V. Ukkusuri ◽  
P. Suresh C. Rao

Abstract Recent disasters have shown the existence of large variance in recovery trajectories across cities that have experienced similar damage levels. Case studies of such events reveal the high complexity of the recovery process of cities, where inter-city dependencies and intra-city coupling of social and physical systems may affect the outcomes in unforeseen ways. Despite the large implications of understanding the recovery processes of cities after disasters for many domains including critical services, disaster management, and public health, little work have been performed to unravel this complexity. Rather, works are limited to analyzing and modeling cities as independent entities, and have largely neglected the effect that inter-city connectivity may have on the recovery of each city. Large scale mobility data (e.g. mobile phone data, social media data) have enabled us to observe human mobility patterns within and across cities with high spatial and temporal granularity. In this paper, we investigate how inter-city dependencies in both physical as well as social forms contribute to the recovery performances of cities after disasters, through a case study of the population recovery patterns of 78 Puerto Rican counties after Hurricane Maria using mobile phone location data. Various network metrics are used to quantify the types of inter-city dependencies that play an important role for effective post-disaster recovery. We find that inter-city social connectivity, which is measured by pre-disaster mobility patterns, is crucial for quicker recovery after Hurricane Maria. More specifically, counties that had more influx and outflux of people prior to the hurricane, were able to recover faster. Our findings highlight the importance of fostering the social connectivity between cities to prepare effectively for future disasters. This paper introduces a new perspective in the community resilience literature, where we take into account the inter-city dependencies in the recovery process rather than analyzing each community as independent entities.


Sign in / Sign up

Export Citation Format

Share Document