scholarly journals Envisat MIPAS measurements of CFC-11: retrieval, validation, and climatology

2008 ◽  
Vol 8 (2) ◽  
pp. 4561-4602 ◽  
Author(s):  
L. Hoffmann ◽  
M. Kaufmann ◽  
R. Spang ◽  
R. Müller ◽  
J. J. Remedios ◽  
...  

Abstract. From July 2002 to March 2004 the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Environmental Satellite (Envisat) measured nearly continuously mid infrared limb radiance spectra. These measurements are utilised to retrieve the global distribution of the chlorofluorocarbon CFC-11 by applying a new fast forward model for Envisat MIPAS and an accompanying optimal estimation retrieval processor. A detailed analysis shows that the total retrieval errors of the individual CFC-11 volume mixing ratios are typically below 10% and that the systematic components are dominating. Contribution of a priori information to the retrieval results are less than 5 to 10%. The vertical resolution of the observations is about 3 to 4 km. The data are successfully validated by comparison with several other space experiments, an air-borne in-situ instrument, measurements from ground-based networks, and independent Envisat MIPAS analyses. The retrieval results from 425 000 Envisat MIPAS limb scans are compiled to provide a new climatological data set of CFC-11. The climatology shows significantly lower CFC-11 abundances in the lower stratosphere compared with the Reference Atmospheres for MIPAS (RAMstan V3.1) climatology. Depending on the atmospheric conditions the differences between the climatologies are up to 30 to 110 ppt (45 to 150%) at 19 to 27 km altitude. Additionally, time series of CFC-11 mean abundance and variability for five latitudinal bands are presented. The observed CFC-11 distributions can be explained by the residual mean circulation and large-scale eddy-transports in the upper troposphere and lower stratosphere. The new CFC-11 data set is well suited for further scientific studies.

2008 ◽  
Vol 8 (13) ◽  
pp. 3671-3688 ◽  
Author(s):  
L. Hoffmann ◽  
M. Kaufmann ◽  
R. Spang ◽  
R. Müller ◽  
J. J. Remedios ◽  
...  

Abstract. From July 2002 to March 2004 the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Environmental Satellite (Envisat) measured nearly continuously mid infrared limb radiance spectra. These measurements are utilised to retrieve the global distribution of the chlorofluorocarbon CFC-11 by applying a new fast forward model for Envisat MIPAS and an accompanying optimal estimation retrieval processor. A detailed analysis shows that the total retrieval errors of the individual CFC-11 volume mixing ratios are typically below 10% in the altitude range 10 to 25 km and that the systematic components dominate. Contribution of a priori information to the retrieval results are less than 5 to 10% and the vertical resolution of the observations is about 3 to 4 km in the same vertical range. The data are successfully validated by comparison with several other space experiments, an air-borne in-situ instrument, measurements from ground-based networks, and independent Envisat MIPAS analyses. The retrieval results from 425 000 Envisat MIPAS limb scans are compiled to provide a new climatological data set of CFC-11. The climatology shows significantly lower CFC-11 abundances in the lower stratosphere compared with the Reference Atmospheres for MIPAS (RAMstan V3.1) climatology. Depending on the atmospheric conditions the differences between the climatologies are up to 30 to 110 ppt (45 to 150%) at 19 to 27 km altitude. Additionally, time series of CFC-11 mean abundance and variability for five latitudinal bands are presented. The observed CFC-11 distributions can be explained by the residual mean circulation and large-scale eddy-transports in the upper troposphere and lower stratosphere. The new CFC-11 data set is well suited for further scientific studies.


2015 ◽  
Vol 8 (3) ◽  
pp. 2501-2520
Author(s):  
T. von Clarmann ◽  
N. Glatthor ◽  
J. Plieninger

Abstract. In order to avoid problems connected with the content of a priori information in volume mixing ratio vertical profiles measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), a user-friendly representation of the data has been developed which will be made available in addition to the regular data product. In this representation, the data will be provided on a fixed pressure grid coarse enough to allow a virtually unconstrained retrieval. As to avoid data interpolation, the grid is chosen to be a subset of the pressure grids used by the Chemistry Climate Model Initiative and the Data Initiative within the Stratosphere-troposphere Processes And their Role in Climate (SPARC) project as well as the Intergovernmental Panel of Climate Change climatologies and model calculations. For representation, the profiles have been transformed to boxcar base functions, which means that volume mixing ratios are constant within a layer. This representation is thought to be more adequate for comparison with model data. While this method is applicable also to vertical profiles of other species, the method is discussed using ozone as an example.


2021 ◽  
Author(s):  
Piera Raspollini ◽  
Enrico Arnone ◽  
Flavio Barbara ◽  
Massimo Bianchini ◽  
Bruno Carli ◽  
...  

Abstract. High quality long-term data sets of altitude-resolved measurements of the atmospheric composition are important because they can be used both to study the evolution of the atmosphere and as a benchmark for future missions. For the final ESA reprocessing of MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) on ENVISAT (ENViromental SATellite) data, numerous improvements were implemented in the level 2 (L2) processor Optimised Retrieval Model (ORM) version 8.22 (V8) and its auxiliary data. The implemented changes involve all aspects of the processing chain, from the modelling of the measurements with the handling of the horizontal inhomogeneities along the line of sight to the use of the Optimal Estimation for retrieving the minor species, from a more sensitive approach to detect the spectra affected by clouds to a refined method for identifying low quality products. Improvements in the modelling of the measurements were obtained also with an update of the used spectroscopic data and of the databases providing the a priori knowledge of the atmosphere. The HITRAN_mipas_pf4.45 spectroscopic database was finalised with new spectroscopic data verified with MIPAS measurements themselves, while recently measured cross-sections were used for the heavy molecules. The so-called IG2 data set, containing the climatology used by MIPAS L2 processor to generate the initial guess and interfering species profiles when the retrieved profiles from previous scans are not available, was improved taking into account the diurnal variation of the profiles defined using climatologies from both measurements and models. Horizontal gradients were generated using ECMWF ERA-Interim data closest in time and space to the MIPAS data. Further improvements in the L2 V8 products derived from the use of the L1b V8 products, which were upgraded to reduce the instrumental temporal drift and to handle the abrupt changes in the calibration gain. The improvements introduced into the ORM V8 L2 processor and its upgraded auxiliary data, together with the use of the L1b V8 products, lead to the generation of the MIPAS L2 V8 products that are characterised by an increased accuracy, better temporal stability, and a greater number of retrieved species.


2017 ◽  
Author(s):  
Kevin S. Olsen ◽  
Kimberly Strong ◽  
Kaley A. Walker ◽  
Chris D. Boone ◽  
Piera Raspollini ◽  
...  

Abstract. The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier Transform Spectrometer (FTS). TANSO-FTS uses three short-wave infrared (SWIR) bands to retrieve total columns of CO2 and CH4 along its optical line-of-sight, and one thermal infrared (TIR) channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios (VMRs) in the troposphere. We examine version 1 of the TANSO-FTS TIR CH4 product by comparing co-located CH4 VMR vertical profiles from two other remote sensing FTS systems: the Canadian Space Agency's Atmospheric Chemistry Experiment-FTS (ACE-FTS) on SCISAT (version 3.5), and the European Space Agency's Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat (ESA ML2PP version 6 and IMK-IAA reduced-resolution version V5R_CH4_224/225), as well as 16 ground stations with the Network for the Detection of Atmospheric Composition Change (NDACC). This work follows an initial inter-comparison study over the Arctic, which incorporated a ground-based FTS at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, and focuses on tropospheric and lower-stratospheric measurements made at middle and tropical latitudes between 2009 to 2013 (mid 2012 for MIPAS). For comparison, vertical profiles from all instruments are interpolated onto a common pressure grid, and the ACE-FTS, MIPAS, and NDACC vertical profiles are smoothed using the TANSO-FTS averaging kernels. We present zonally-averaged mean CH4 differences between each instrument and TANSO-FTS with and without smoothing, examine their information content, sensitive altitude range, correlation, a priori dependence, and the variability within each data set. Partial columns are calculated from the VMR vertical profiles, and their correlations are examined. We find that the TANSO-FTS vertical profiles agree with the ACE-FTS and both MIPAS retrievals' vertical profiles within 4 % below 15 km when smoothing is applied to the profiles from instruments with finer vertical resolution, but that the relative differences can increase to on the order of 25 % when no smoothing is applied. Computed partial columns are tightly correlated for each pair of data sets. We investigated whether the difference between TANSO-FTS and other CH4 VMR data products varies with latitude. Our study reveals a small dependence of around 0.1 % per ten degrees latitude, with smaller differences over the equator, and greater differences towards the poles.


2015 ◽  
Vol 8 (7) ◽  
pp. 2749-2757 ◽  
Author(s):  
T. von Clarmann ◽  
N. Glatthor ◽  
J. Plieninger

Abstract. In order to avoid problems connected with the content of a priori information in volume mixing ratio vertical profiles measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), a user-friendly representation of the data has been developed which will be made available in addition to the regular data product. In this representation, the data will be provided on a fixed pressure grid coarse enough to allow a virtually unconstrained retrieval. To avoid data interpolation, the grid is chosen to be a subset of the pressure grids used by the Chemistry–Climate Model Initiative and the Data Initiative within the Stratosphere-troposphere Processes And their Role in Climate (SPARC) project as well as the Intergovernmental Panel of Climate Change climatologies and model calculations. For representation, the profiles have been transformed to boxcar base functions, which means that volume mixing ratios are constant within a layer. This representation is thought to be more adequate for comparison with model data. While this method is applicable also to vertical profiles of other species, the method is discussed using ozone as an example.


2004 ◽  
Vol 22 (10) ◽  
pp. 3411-3420 ◽  
Author(s):  
V. F. Sofieva ◽  
J. Tamminen ◽  
H. Haario ◽  
E. Kyrölä ◽  
M. Lehtinen

Abstract. In this work we discuss inclusion of a priori information about the smoothness of atmospheric profiles in inversion algorithms. The smoothness requirement can be formulated in the form of Tikhonov-type regularization, where the smoothness of atmospheric profiles is considered as a constraint or in the form of Bayesian optimal estimation (maximum a posteriori method, MAP), where the smoothness of profiles can be included as a priori information. We develop further two recently proposed retrieval methods. One of them - Tikhonov-type regularization according to the target resolution - develops the classical Tikhonov regularization. The second method - maximum a posteriori method with smoothness a priori - effectively combines the ideas of the classical MAP method and Tikhonov-type regularization. We discuss a grid-independent formulation for the proposed inversion methods, thus isolating the choice of calculation grid from the question of how strong the smoothing should be. The discussed approaches are applied to the problem of ozone profile retrieval from stellar occultation measurements by the GOMOS instrument on board the Envisat satellite. Realistic simulations for the typical measurement conditions with smoothness a priori information created from 10-years analysis of ozone sounding at Sodankylä and analysis of the total retrieval error illustrate the advantages of the proposed methods. The proposed methods are equally applicable to other profile retrieval problems from remote sensing measurements.


2007 ◽  
Vol 7 (13) ◽  
pp. 3519-3536 ◽  
Author(s):  
A. Gobiet ◽  
G. Kirchengast ◽  
G. L. Manney ◽  
M. Borsche ◽  
C. Retscher ◽  
...  

Abstract. This study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to present) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2–0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10–35 km altitude range of residual RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realised given care in the data processing to strictly limit structural uncertainty. The results thus reinforce that adequate high-altitude initialisation is crucial for accurate stratospheric RO retrievals. The common method of initialising, at some altitude in the upper stratosphere, the hydrostatic integral with an upper boundary temperature or pressure value derived from meteorological analyses is prone to introduce biases from the upper boundary down to below 25 km. Also above 30 to 35 km, GNSS RO delivers a considerable amount of observed information up to around 40 km, which is particularly interesting for numerical weather prediction (NWP) systems, where direct assimilation of non-initialised observed RO bending angles (free of a priori) is thus the method of choice. The results underline the value of RO for climate applications.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1256
Author(s):  
Jan El Kassar ◽  
Cintia Carbajal Henken ◽  
Rene Preusker ◽  
Jürgen Fischer

A new algorithm for the retrieval of day-time total column water vapour (TCWV) from measurements of a MSG-SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager) instrument is presented. The retrieval is based on a forward operator, at the core of which lies Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV). This forward model relates TCWV and surface temperature to brightness temperatures in the split window at 11 and 12µm with the use of a first guess for temperature and humidity profiles from the ERA5 reanalysis. The forward model is then embedded in a full Optimal Estimation (OE) method, which yields pixel by pixel uncertainty estimates and performance indicators. The algorithm is applicable to any instrument which features the split window configuration, given a first guess for atmospheric conditions (i.e., from NWP) and an estimate of surface emissivity at 11 µm. The algorithm was developed within the framework of RealPEP (Near-Realtime Quantitative Precipitation Estimation and Prediction) in which the advancement of the estimation and nowcasting of extreme precipitation and flooding in Germany are studied. Thus, processing and validation has been limited to the German domain. Three independent ground-based TCWV observation data sets were used as reference, i.e., AERONET (Aerosol Robotic Network), GNSS Germany (Global Navigation Satellite System) and measurements from two MWR (Microwave Radiometer) sites. The validation concludes with good agreement, with absolute biases between 0.11 and 2.85 kg/m2, root mean square deviations (rmsds) between 1.63 and 3.24 kg/m2 and Pearson correlation coefficients ranging from 0.96 to 0.98. The retrievals uncertainty estimates were evaluated against AERONET. The comparison suggests that, in sum, uncertainties are estimated well, while still some error sources seem to be over- and underestimated. In limited case studies it could be shown that SEVIRI TCWV is capable to both display large scale variabilities in water vapour fields and reproduce the daily course of water vapour exposed by ground-based observations.


2014 ◽  
Vol 7 (4) ◽  
pp. 5087-5139 ◽  
Author(s):  
R. Pommrich ◽  
R. Müller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
F. Ploeger ◽  
...  

Abstract. Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO) and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11), CCl2F2 (CFC-12), and CO2) in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the free troposphere is deduced from MOPITT measurements (at &amp;approx; 700–200 hPa). Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in-situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low &amp;approx; 10–20 ppbv). Further, the model results are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns) simulated by this model version of CLaMS are in good agreement with observations. The simulations show a too rapid upwelling compared to observations as a consequence of the overestimated vertical velocities in the ERA-interim reanalysis data set. Moreover, the simulated tropical anomaly patterns of N2O are in good agreement with observations. In the simulations, anomaly patterns for CH4 and CFC-11 were found to be consistent with those of N2O; for all long-lived tracers, positive anomalies are simulated because of the enhanced tropical upwelling in the easterly phase of the quasi-biennial oscillation.


2012 ◽  
Vol 5 (4) ◽  
pp. 831-841 ◽  
Author(s):  
B. Funke ◽  
T. von Clarmann

Abstract. Calculation of mean trace gas contributions from profiles obtained by retrievals of the logarithm of the abundance rather than retrievals of the abundance itself are prone to biases. By means of a system simulator, biases of linear versus logarithmic averaging were evaluated for both maximum likelihood and maximum a priori retrievals, for various signal to noise ratios and atmospheric variabilities. These biases can easily reach ten percent or more. As a rule of thumb we found for maximum likelihood retrievals that linear averaging better represents the true mean value in cases of large local natural variability and high signal to noise ratios, while for small local natural variability logarithmic averaging often is superior. In the case of maximum a posteriori retrievals, the mean is dominated by the a priori information used in the retrievals and the method of averaging is of minor concern. For larger natural variabilities, the appropriateness of the one or the other method of averaging depends on the particular case because the various biasing mechanisms partly compensate in an unpredictable manner. This complication arises mainly because of the fact that in logarithmic retrievals the weight of the prior information depends on abundance of the gas itself. No simple rule was found on which kind of averaging is superior, and instead of suggesting simple recipes we cannot do much more than to create awareness of the traps related with averaging of mixing ratios obtained from logarithmic retrievals.


Sign in / Sign up

Export Citation Format

Share Document