Comparison of Simulation Modules of TRANSYT and INTEGRATION Models

Author(s):  
Hesham A. Rakha ◽  
Michel W. Van Aerde

The TRANSYT simulation/optimization model serves as an unofficial international standard against which many measure the efficiency of other methods of coordinating networks of traffic signals that operate at a constant and common cycle length. However, dynamics due to traffic rerouting, the simultaneous operation of adjacent traffic signals at different cycle lengths, the effect of queue spillbacks on the capacity of upstream links, and various forms of real-time intersection control cannot be modeled using a static model such as TRANSYT. This has created a unique niche for a more dynamic signal network simulation tool. Before modeling such special dynamic scenarios, there first exists a need to validate the static signal control features of such a model and to determine if its unique dynamic features still permit it to yield credible static results. This study has two objectives. First, it attempts to illustrate the extent to which estimates of vehicle travel time, vehicle delay, and number of vehicle stops are related when a standard static signal network is examined using both TRANSYT and INTEGRATION. Second, it strives to illustrate that the types of more complex signal timing problems, which at present cannot be examined by the TRANSYT model, can be examined using the dynamic features of INTEGRATION. The results are intended to permit a better appreciation of both their differences and similarities and permit a more informed decision as to when and where each model should be used. Also demonstrated is that INTEGRATION simulates traffic-signalized networks in a manner that is consistent with TRANSYT for conditions in which TRANSYT is valid. Specifically, the difference in total travel time and percentage of vehicle stops is within 5 percent. In addition, it is also shown that INTEGRATION can simulate conditions that represent the limitations to the current TRANSYT model, such as degrees of saturation in excess of 95 percent and adjacent signals operating at different cycle length durations. This analysis of the simulation features of TRANSYT and INTEGRATION is intended to be a precursor to a comparison of their respective optimization routines.

Author(s):  
Robert B. Noland

Traffic signals generally have been installed to maximize the flow of motor vehicle traffic by reducing the average travel delay time. Under free-flow conditions, motor vehicle travel delay is very sensitive to the amount of green phase and the total cycle of the traffic signal. Average pedestrian delay at traffic signals is not taken into account. Some simple examples are used to demonstrate that travel time delay costs to pedestrians caused by existing signalization cycles may often result in increased travel time costs to society. In areas with heavy pedestrian traffic (or during peak pedestrian hours), traffic signals should trade off the costs of motor vehicle delay with pedestrian delay. This may suggest that in some areas, motor vehicle traffic should be banned or severely restricted. Narrower street widths that can allow reduced total signal cycle times can also reduce pedestrian delay.


Author(s):  
Cynthia Taylor ◽  
Deirdere Meldrum ◽  
Les Jacobson

A fuzzy logic ramp-metering algorithm was designed to overcome the limitations of conventional ramp-metering strategies. The fuzzy controller demonstrated improved robustness, prevented heavy congestion, intelligently balanced conflicting needs, and tuned easily. The objective was to maximize total distance traveled and minimize total travel time and vehicle delay, while maintaining acceptable ramp queues. A multiple-ramp study site from the Seattle I-5 corridor was modeled and tested using the freeway simulation software, FRESIM. For five of the six testing sets, encompassing a variety of traffic conditions, the fuzzy controller outperformed the three other controllers tested.


Author(s):  
Eric Lind ◽  
Joseph Reid

Transit riders consistently rate speed and reliability of service as primary drivers of satisfaction, and transit agencies can help retain and grow ridership by improving these components of service. The challenge for transit agency staff is to identify when and where they should focus efforts to improve service quality. Here we propose an approach to data analysis that identifies and isolates specific aspects of service that are limiting speed and reliability. In-vehicle travel time can be decomposed into time spent in motion and time stopped. Time in motion is often dependent on factors common to general traffic, whereas time stopped has some features in common with general traffic (i.e., traffic signals) and some unique to buses (i.e., passenger dwell). Other sources of delay from serving a bus stop include deceleration, acceleration, and signal delay. To improve overall travel time, transit agencies must prioritize interventions that will contribute the most to improving speed and reliability. We used high-resolution automatic vehicle locator data to assign components of speed and reliability within a trip-level “time budget.” We compared typical time budget components across service types, and used the time budget approach to evaluate local service and Rapid bus service operating simultaneously on the same alignment. Results of the delay and variability quantifications suggested particular interventions, as well as the expected size of the resulting effect. With limited resources, the bus time budget approach could aid understanding and prioritization of transit agency efforts to improve speed and reliability.


Author(s):  
Sharmin-E-Shams Chowdhury ◽  
Aleksandar Stevanovic ◽  
Nikola Mitrovic

Pedestrian walk timings at most U.S. traffic signals are run in concurrence with relevant signal phases for vehicular traffic. This usually means that signal operations coordinated for the major street can be interrupted by a pedestrian call. Such an interruption may in practice last for a few minutes, thus causing increased delays and stops for major traffic flows. An alternative to this design is to increase the cycle length and embed pedestrian timings within the ring-barrier structure of the prevailing coordination plan. Both approaches have advantages and disadvantages. A fresh approach offered by this study is a comprehensive experimental design and holistic performance evaluation perspectives. The study examines the two abovementioned treatments of pedestrian timings for a small corridor of five intersections in Utah. The experiments have been done in a high-fidelity microsimulation environment with the Software-in-the-Loop version of the field controller (Econolite ASC/3). Findings show that either approach works well for very low traffic demands. When the traffic demand increases findings cannot be generalized as they differ for major coordinated movements versus overall network performance. While major-street traffic prefers no interruption of the coordinated operations, the overall network performance is better in the other case. This can be explained by the fact that avoiding interruptions is usually achieved at the expense of longer cycle length, which increases delay for everyone in the network.


Author(s):  
Eun Hak Lee ◽  
Kyoungtae Kim ◽  
Seung-Young Kho ◽  
Dong-Kyu Kim ◽  
Shin-Hyung Cho

As the share of public transport increases, the express strategy of the urban railway is regarded as one of the solutions that allow the public transportation system to operate efficiently. It is crucial to express the urban railway’s express strategy to balance a passenger load between the two types of trains, that is, local and express trains. This research aims to estimate passengers’ preference between local and express trains based on a machine learning technique. Extreme gradient boosting (XGBoost) is trained to model express train preference using smart card and train log data. The passengers are categorized into four types according to their preference for the local and express trains. The smart card data and train log data of Metro Line 9 in Seoul are combined to generate the individual trip chain alternatives for each passenger. With the dataset, the train preference is estimated by XGBoost, and Shapley additive explanations (SHAP) is used to interpret and analyze the importance of individual features. The overall F1 score of the model is estimated to be 0.982. The results of feature analysis show that the total travel time of the local train feature is found to substantially affect the probability of express train preference with a 1.871 SHAP value. As a result, the probability of the express train preference increases with longer total travel time, shorter in-vehicle time, shorter waiting time, and few transfers on the passenger’s route. The model shows notable performance in accuracy and provided an understanding of the estimation results.


2015 ◽  
Vol 2015 ◽  
pp. 1-16
Author(s):  
Chao Lu ◽  
Yanan Zhao ◽  
Jianwei Gong

Reinforcement learning (RL) has shown great potential for motorway ramp control, especially under the congestion caused by incidents. However, existing applications limited to single-agent tasks and based onQ-learning have inherent drawbacks for dealing with coordinated ramp control problems. For solving these problems, a Dyna-Qbased multiagent reinforcement learning (MARL) system named Dyna-MARL has been developed in this paper. Dyna-Qis an extension ofQ-learning, which combines model-free and model-based methods to obtain benefits from both sides. The performance of Dyna-MARL is tested in a simulated motorway segment in the UK with the real traffic data collected from AM peak hours. The test results compared with Isolated RL and noncontrolled situations show that Dyna-MARL can achieve a superior performance on improving the traffic operation with respect to increasing total throughput, reducing total travel time and CO2emission. Moreover, with a suitable coordination strategy, Dyna-MARL can maintain a highly equitable motorway system by balancing the travel time of road users from different on-ramps.


2021 ◽  
Vol 35 (09) ◽  
pp. 2150153
Author(s):  
Minghui Ma ◽  
Yaozong Zhang ◽  
Shidong Liang

The vehicle exhaust has been one of the major sources of greenhouse gas emissions. With an increase in traffic volume, it has been found that the introduced intelligent traffic control is necessary. This paper investigated a novel VSL strategy considering the dynamic control cycle to improve the traffic efficiency and environmental benefit on freeway. An extension of the cell transmission model (CTM) was used to depict the traffic characteristics under VSL control, and integrated with the microscopic emission and fuel consumption model VT-Micro to estimate the pollution emission of each cell. The VSL strategy was designed to provide multiple control cycles with different length to adjust the scope of VSL changes, furthermore, a probability formula was developed and used to determine the optimal quantity of control cycles to reduce the computational complexity of controller. An objective optimization function was formulated with the aim of minimizing total travel time and CO emission. With simulation experiments, the results showed that the proposed VSL strategy considering the dynamic control cycle outperformed uncontrolled scenario, resulting in up to 8.4% of total travel time reductions, 26.7% of delay optimization, and 14.5% reduction in CO emission, which enhanced the service level of freeway network.


Author(s):  
Daniel J. Cook

Along urban and suburban arterials, closely-spaced signalized intersections are commonly used to provide access to adjacent commercial developments. Often, these signalized intersections are designed to provide full access to developments on both sides of the arterial and permit through, left-turn, and right-turn movements from every intersection approach. Traffic signal timing is optimized to reduce vehicle delay or provide progression to vehicles on the arterial, or both. However, meeting both of these criteria can be cumbersome, if not impossible, under high-demand situations. This research proposes a new design that consolidates common movements at three consecutive signalized intersections into strategic fixed locations along the arterial. The consolidation of common movements allows the intersections to cycle between only two critical phases, which, in turn, promotes shorter cycle lengths, lower delay, and better progression. This research tested the consolidated intersection concept by modeling a real-world site in microsimulation software and obtaining values for delay and travel time for multiple vehicle paths along the corridor and adjacent commercial developments in both existing and proposed conditions. With the exception of unsignalized right turns at the periphery of the study area, all non-displaced routes showed a reduction in travel time and delay. Additional research is needed to understand how additional travel through the commercial developments adjacent to the arterial may effect travel time and delay. Other expected benefits of the proposed design include a major reduction in conflict points, shorter pedestrian crossing and wait times, and the opportunity to provide pedestrian refuge areas in the median.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Qinrui Tang ◽  
Bernhard Friedrich

Urban road networks may benefit from left turn prohibition at signalized intersections regarding capacity, for particular traffic demand patterns. The objective of this paper is to propose a method for minimizing the total travel time by prohibiting left turns at intersections. With the flows obtained from the stochastic user equilibrium model, we were able to derive the stage generation, stage sequence, cycle length, and the green durations using a stage-based method which can handle the case that stages are sharing movements. The final output is a list of the prohibited left turns in the network and a new signal timing plan for every intersection. The optimal list of prohibited left turns was found using a genetic algorithm, and a combination of several algorithms was employed for the signal timing plan. The results show that left turn prohibition may lead to travel time reduction. Therefore, when designing a signal timing plan, left turn prohibition should be considered on a par with other left turn treatment options.


Sign in / Sign up

Export Citation Format

Share Document