Harmful Effects of Leukocyte-Rich Platelet-Rich Plasma on Rabbit Tendon Stem Cells In Vitro

2016 ◽  
Vol 44 (8) ◽  
pp. 1941-1951 ◽  
Author(s):  
Lei Zhang ◽  
Shuo Chen ◽  
Peng Chang ◽  
Nirong Bao ◽  
Chao Yang ◽  
...  
2017 ◽  
Vol 65 (4) ◽  
pp. 359-367 ◽  
Author(s):  
Giulia Tarquinio DEMARCO ◽  
Laura Borges KIRSCHNICK ◽  
Luis Bayardo WATSON ◽  
Marcus Cristian MUNIZ CONDE ◽  
Flávio Fernando DEMARCO ◽  
...  

ABSTRACT Regenerative therapies have been widely developed in dentistry and it is important to incorporate dentists’ knowledge of these new therapies into the dental clinic routine. This study reviewed the literature on regenerative therapies and clinical applications. Tissue engineering has contributed to changes in the paradigm of restorative health sciences. Its pillars underpin the techniques of tissue and organ regeneration. Despite the majority of studies in this field being in vitro, a range of preclinical studies and methodologies has been formed using these principles and they are already being used on humans. The use of platelet-rich plasma and platelet-rich fibrin in surgery as natural scaffolds for the reestablishment of bone and periodontal tissue are often reported in the literature and clinical trials using this approach have shown promising results. Stem cells from autologous dental pulp have been successfully applied in bone tissue regeneration using natural collagen scaffold in humans. In addition, revascularization of the root canal already appears in the literature as a promising alternative to apexification. The principle behind this therapy is the use of the blood clot as a scaffold and the migration of stem cells of the apical papilla to regenerate the dental pulp organ. Final considerations: Although still in the early stages, regenerative therapies can now be used in dental practice. Knowledge of the principles governing these therapies should be understood by the dentist for use in clinical practice.


2017 ◽  
Vol 11 (1) ◽  
pp. 163-182 ◽  
Author(s):  
Dimitrios Giotis ◽  
Ashkan Aryaei ◽  
Theofanis Vasilakakos ◽  
Nikolaos K. Paschos

Background:Shoulder pathology can cause significant pain, discomfort, and loss of function that all interfere with activities of daily living and may lead to poor quality of life. Primary osteoarthritis and rotator cuff diseases with its sequalae are the main culprits. Management of shoulder disorders using biological factors gained an increasing interest over the last years. This interest reveals the need of effective treatments for shoulder degenerative disorders, and highlights the importance of a comprehensive and detailed understanding of the rapidly increasing knowledge in the field.Methods:This study will describe most of the available biology-based strategies that have been recently developed, focusing on their effectiveness in animal and clinical studies.Results:Data fromin vitrowork will also be briefly presented; in order to further elucidate newly acquired knowledge regarding mechanisms of tissue degeneration and repair that would probably drive translational work in the next decade. The role of platelet rich-plasma, growth factors, stem cells and other alternative treatments will be described in an evidence-based approach, in an attempt to provide guidelines for their clinical application. Finally, certain challenges that biologic treatments face today will be described as an initiative for future strategies.Conclusion:The application of different growth factors and mesenchymal stem cells appears as promising approaches for enhancing biologic repair. However, data from clinical studies are still limited, and future studies need to improve understanding of the repair process in cellular and molecular level and evaluate the effectiveness of biologic factors in the management of shoulder disorders.


Author(s):  
James H-C. Wang

Tendon injuries, including acute tendon injuries and tendinopathy, are common in both occupational and athletic settings. However, current treatments for tendon injury are largely ineffective, as they cannot restore normal structure and function to injured tendons. This challenge mainly stems from our incomplete understanding of tendon cell properties and responses to biomechanical and biochemical environments surrounding the cells. In recent years, however, significant progress has been made on two fronts. First, tendon stem cells (TSCs) have been recently identified. The tendon-specific stem cells can self-renew and posses multi-differentiation potential and as such, may be used to repair injured tendons more effectively. Second, platelet-rich plasma (PRP) has now been widely used in orthopaedics and sports medicine to treat injured tendons. In this presentation, I will present data on TSCs, in terms of their differential properties with respect to tenocytes and their differential mechano-responses when subjected to small and large mechanical loading conditions. I will also discuss the basic scientific studies on PRP regarding its effects on TSCs, particularly on their differentiation, which is a critical issue related to the safety and efficacy of PRP treatment in clinics (Fig. 1).


Author(s):  
Phuc Van Pham ◽  
Loan Thi-Tung Dang ◽  
Nhung Hai Truong ◽  
Ngoc Kim Phan

In recent years, Platelet Rich Plasma (PRP) and Adipose-Derived Stem Cells (ADSCs) have been used separately for many clinical applications, especially skin rejuvenation. A combined injection of PRP and ADSCs could therefore be used to treat skin wrinkles. However, there are controversies and reports with conflicting results regarding the efficacy of this treatment. The authors aimed to determine the anti-wrinkle and skin rejuvenation mechanism of combined PRP and ADSCs treatment. The effects of PRP and ADSCs isolated from the same consenting donors were evaluated using in vitro and in vivo models. The in vitro effects of PRP and ADSCs on dermal fibroblast proliferation, collagen production, and inhibition of Matrix Metalloproteinase-1 (MMP-1) production were investigated using a co-culture model. Fibroblasts and ADSCs were cultured within the same dish, but in two separate cavities (using an insert plate), in the presence of the same PRP-supplemented medium. In vivo, the authors evaluated the effects of combined PRP and ADSCs on skin histochemistry, including changes in the dermal layer and collagen production in photo-aged skin (mice). They also determined the survival and differentiation of grafted ADSCs. The results show that combined PRP and ADSCs strongly stimulate in vitro fibroblast proliferation, collagen production, and inhibition of MMP-1 synthesis. Intra-dermal co-injection of PRP and ADSCs was observed to stimulate increased dermal layer thickness and collagen production compared with the untreated group. These results indicate that a combined PRP and ADSC injection can reduce wrinkles more effectively than either PRP or ADSC alone, and provide insight into the clinical use of PRP combined with ADSCs for dermal applications, particularly skin rejuvenation.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Barbara Hersant ◽  
Mounia Sid-Ahmed ◽  
Laura Braud ◽  
Maud Jourdan ◽  
Yasmine Baba-Amer ◽  
...  

Chronic and acute nonhealing wounds represent a major public health problem, and replacement of cutaneous lesions by the newly regenerated skin is challenging. Mesenchymal stem cells (MSC) and platelet-rich plasma (PRP) were separately tested in the attempt to regenerate the lost skin. However, these treatments often remained inefficient to achieve complete wound healing. Additional studies suggested that PRP could be used in combination with MSC to improve the cell therapy efficacy for tissue repair. However, systematic studies related to the effects of PRP on MSC properties and their ability to rebuild skin barrier are lacking. We evaluated in a mouse exhibiting 4 full-thickness wounds, the skin repair ability of a treatment combining human adipose-derived MSC and human PRP by comparison to treatment with saline solution, PRP alone, or MSC alone. Wound healing in these animals was measured at day 3, day 7, and day 10. In addition, we examined in vitro and in vivo whether PRP alters in MSC their proangiogenic properties, their survival, and their proliferation. We showed that PRP improved the efficacy of engrafted MSC to replace lost skin in mice by accelerating the wound healing processes and ameliorating the elasticity of the newly regenerated skin. In addition, we found that PRP treatment stimulated in vitro, in a dose-dependent manner, the proangiogenic potential of MSC through enhanced secretion of soluble factors like VEGF and SDF-1. Moreover, PRP treatment ameliorated the survival and activated the proliferation of in vitro cultured MSC and that these effects were accompanied by an alteration of the MSC energetic metabolism including oxygen consumption rate and mitochondrial ATP production. Similar observations were found in vivo following combined administration of PRP and MSC into mouse wounds. In conclusion, our study strengthens that the use of PRP in combination with MSC might be a safe alternative to aid wound healing.


2019 ◽  
Vol 87 ◽  
pp. 76-87 ◽  
Author(s):  
Meghan Samberg ◽  
Randolph Stone ◽  
Shanmugasundaram Natesan ◽  
Andrew Kowalczewski ◽  
Sandra Becerra ◽  
...  

2017 ◽  
Vol 67 (2) ◽  
pp. 183-196 ◽  
Author(s):  
Siegmund Lang ◽  
Marietta Herrmann ◽  
Christian Pfeifer ◽  
Gero Brockhoff ◽  
Johannes Zellner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document