scholarly journals miR-199a-5p inhibits proliferation and induces apoptosis in hemangioma cells through targeting HIF1A

2017 ◽  
Vol 31 ◽  
pp. 039463201774935 ◽  
Author(s):  
Yang Wang ◽  
Yu-Xin Dai ◽  
Shu-Qing Wang ◽  
Ming-Ke Qiu ◽  
Zhi-Wei Quan ◽  
...  

MicroRNAs (miRNAs) exhibit a crucial role in the regulation of angiogenesis and tumor progression, of which miR-199a-5p (miR-199a) has been reported to function as a tumor suppressor in multiple malignancies. However, the precise mechanisms underlying miR-199a in hemangiomas (HAs) remain elusive. In this study, we found that miR-199a had low expression level, while proliferating cell nuclear antigen (PCNA) had high expression level in proliferating-phase HAs compared with the involuting-phase HAs and normal tissues. Spearman correlation analysis revealed the negative correlation of miR-199a with PCNA expression in proliferating-phase HAs. In vitro experiments showed that restoration of miR-199a suppressed cell proliferation capability and induced cell apoptosis in HA-derived endothelial cells (HDEC) and CRL-2586 EOMA cells, followed with decreased PCNA expression and increased cleaved caspase-3 expression, but miR-199a inhibitor reversed these effects. Furthermore, HIF1A was identified as a target of miR-199a and had negative correlation with miR-199a expression in proliferating-phase HAs. Overexpression of HIF1A attenuated the anti-proliferation effect of miR-199a mimic in HAs cells. Taken together, our findings demonstrate that miR-199a may inhibit proliferation and induce apoptosis in HAs cells via targeting HIF1A and provide a potential therapeutic target for HAs.

Tumor Biology ◽  
2020 ◽  
Vol 42 (4) ◽  
pp. 101042832091447
Author(s):  
Eman H. Yousef ◽  
Mohamed E El-Mesery ◽  
Maha R Habeeb ◽  
Laila A Eissa

Hepatocellular carcinoma is a major cause of cancer mortality worldwide. The outcome of hepatocellular carcinoma depends mainly on its early diagnosis. To date, the performance of traditional biomarkers is unsatisfactory. Polo-like kinase 1 is a serine/threonine kinase that plays essential roles in cell cycle progression and deoxyribonucleic acid damage. Moreover, polo-like kinase 1 knockdown decreases the survival of hepatocellular carcinoma cells; therefore, polo-like kinase 1 is an attractive target for anticancer treatments. Nobiletin, a natural polymethoxy flavonoid, exhibits a potential antiproliferative effect against a wide variety of cancers. This study targets to identify a reliable diagnostic biomarker for hepatocellular carcinoma and provide a potential therapeutic target for its treatment. Polo-like kinase 1 levels were analyzed in 44 hepatocellular carcinoma patients, 33 non-hepatocellular carcinoma liver cirrhosis patients and 15 healthy controls using the enzyme-linked immunosorbent assay method. Receiver operating characteristics curve analysis was used to establish a predictive model for polo-like kinase 1 relative to α-fetoprotein in hepatocellular carcinoma diagnosis. Furthermore, in the in vitro study, gene expressions were assessed by quantitative polymerase chain reaction in two human hepatocellular carcinoma cell lines after treatment with doxorubicin and polo-like kinase 1 inhibitor volasertib (Vola) either alone or in combination with nobiletin. Cell viability was also determined using the crystal violet assay.: Serum polo-like kinase 1 levels in hepatocellular carcinoma patients were significantly higher than liver cirrhosis and control groups (p < 0.0001). Polo-like kinase 1 showed a reasonable sensitivity, specificity, positive predictive value, and negative predictive value in hepatocellular carcinoma diagnosis. Moreover, nobiletin improved inhibition of cell growth induced by Vola and doxorubicin. Regarding reverse transcription polymerase chain reaction results, nobiletin suppressed expressions of polo-like kinase 1 and proliferating cell nuclear antigen and elevated expressions of P53, poly (ADPribose) polymerase 1, and caspase-3. Nobiletin/doxorubicin and nobiletin/Vola showed a significant increase in caspase-3 activity indicating cell apoptosis. Polo-like kinase 1 may be a potential biomarker for hepatocellular carcinoma diagnosis and follow-up during treatment with chemotherapies. In addition, nobiletin synergistically potentiates the doxorubicin and Vola-mediated anticancer effect that may be attributed partly to suppression of polo-like kinase 1 and proliferating cell nuclear antigen expression and enhancement of chemotherapy-induced apoptosis.


1994 ◽  
Vol 4 (8) ◽  
pp. 1588-1597
Author(s):  
R A Zager ◽  
S M Fuerstenberg ◽  
P H Baehr ◽  
D Myerson ◽  
B Torok-Storb

Xanthine oxidase (XO) activity and hydroxyl radical (.OH) formation are widely proposed mediators of renal reperfusion injury, potentially altering the severity of, and recovery from, postischemic acute renal failure. The goal of this study was to ascertain whether combination XO inhibitor (oxypurinol) and .OH scavenger (Na benzoate) therapy, given at the time of renal ischemia, alters the extent of: (1) tubular necrosis and filtration failure; (2) DNA fragmentation/apoptosis (assessed in situ by terminal deoxynucleotidyl transferase reactivity); (3) early tubular regenerative responses (proliferating cell nuclear antigen expression; (3H)thymidine incorporation); and (4) the rate and/or degree of functional and morphologic repair. The effects of XO inhibition, .OH scavengers, and "catalytic" iron (FeSO4) on human proximal tubular cell proliferation in vitro were also assessed with a newly established cell line (HK-2). Male Sprague-Dawley rats were subjected to 35 min of bilateral renal arterial occlusion with or without oxypurinol/benzoate therapy. These agents did not alter the extent of tubular necrosis or filtration failure, proliferating cell nuclear antigen expression or thymidine incorporation, or the rate/extent of renal functional/morphologic repair. DNA fragmentation did not precede tubular necrosis, and it was unaffected by antioxidant therapy. By 5 days postischemia, both treatment groups demonstrated regenerating epithelial fronds that protruded into the lumina. These structures contained terminal deoxynucleotidyl transferase-reactive, but morphologically intact, cells, suggesting the presence of apoptosis. Oxypurinol and .OH scavengers (benzoate; dimethylthiourea) suppressed in vitro tubular cell proliferation; conversely, catalytic Fe had a growth-stimulatory effect. These results suggest that: (1) XO inhibition/.OH scavenger therapy has no discernible net effect on postischemic acute renal failure; (2) DNA fragmentation does not precede tubular necrosis, suggesting that it is not a primary mediator of ischemic cell death; and (3) antioxidants can be antiproliferative for human tubular cells, possibly mitigating their potential beneficial effects.


2018 ◽  
Vol 72 (2) ◽  
pp. 80-89
Author(s):  
Anita Radovanovic ◽  
Milica Kovacevic-Filipovic ◽  
Ivan Milosevic ◽  
Tijana Luzajic ◽  
Stefan Velickovic ◽  
...  

Introduction. The ovarian surface epithelium (OSE) undergoes intensive regeneration and remodeling after each ovulation during the whole reproductive period. This process increases the risk of one of the most common ovarian tumors in women and the female dog. Considering the fact that maternal hypothyroidism highly impacts cell proliferation and cell death during folliculogenesis in the early neonatal period, we aimed to analyze its effect on OSE morphology and dynamics. Materials and Methods. The study was performed on newborn (24-h-old) and neonatal (4-day-old) female rats, a randomized trial between the control and hypothyroid groups, born under controlled circumstances and hypothyroid mothers, respectively. Their ovaries were analyzed histologically and processed to determine the OSE cell height as an average value of four measurement points. Also, the immunopositivity of the proliferating cell nuclear antigen (PCNA) and caspase-3 were assessed semiquantitatively. Results and Conclusions. No major structural differences of OSE were found between groups within the given ages except for a slight increment of OSE cell height and incompleteness of apical cell membrane with cytoplasmic projections in hypothyroid animals. PCNA immunopositivity of the OSE cells was higher in ovaries of hypothyroid animals of both ages in comparison to the controls. Moreover, only scarce OSE cells were caspase-3 positive in both groups and ages, with no difference in immunopositivity. Our study confirms the impact of hypothyroidism in the early postnatal period on morphology and proliferation rate of OSE cells, with no effect on caspase-3 dependent cell removal, which may serve as a premise for future investigation of potential carcinogenesis, in terms of prevention and treatment of ovarian cancer.


1989 ◽  
Vol 9 (1) ◽  
pp. 57-66
Author(s):  
M Zuber ◽  
E M Tan ◽  
M Ryoji

Proliferating cell nuclear antigen (PCNA) (also called cyclin) is known to stimulate the activity of DNA polymerase delta but not the other DNA polymerases in vitro. We injected a human autoimmune antibody against PCNA into unfertilized eggs of Xenopus laevis and examined the effects of this antibody on the replication of injected plasmid DNA as well as egg chromosomes. The anti-PCNA antibody inhibited plasmid replication by up to 67%, demonstrating that PCNA is involved in plasmid replication in living cells. This result further implies that DNA polymerase delta is necessary for plasmid replication in vivo. Anti-PCNA antibody alone did not block plasmid replication completely, but the residual replication was abolished by coinjection of a monoclonal antibody against DNA polymerase alpha. Anti-DNA polymerase alpha alone inhibited plasmid replication by 63%. Thus, DNA polymerase alpha is also required for plasmid replication in this system. In similar studies on the replication of egg chromosomes, the inhibition by anti-PCNA antibody was only 30%, while anti-DNA polymerase alpha antibody blocked 73% of replication. We concluded that the replication machineries of chromosomes and plasmid differ in their relative content of DNA polymerase delta. In addition, we obtained evidence through the use of phenylbutyl deoxyguanosine, an inhibitor of DNA polymerase alpha, that the structure of DNA polymerase alpha holoenzyme for chromosome replication is significantly different from that for plasmid replication.


2020 ◽  
Vol 117 (38) ◽  
pp. 23588-23596
Author(s):  
Min Li ◽  
Xiaohua Xu ◽  
Chou-Wei Chang ◽  
Yilun Liu

In human cells, the DNA replication factor proliferating cell nuclear antigen (PCNA) can be conjugated to either the small ubiquitinlike modifier SUMO1 or SUMO2, but only SUMO2-conjugated PCNA is induced by transcription to facilitate resolution of transcription–replication conflict (TRC). To date, the SUMO E3 ligase that provides substrate specificity for SUMO2-PCNA conjugation in response to TRC remains unknown. Using a proteomic approach, we identified TRIM28 as the E3 ligase that catalyzes SUMO2-PCNA conjugation. In vitro, TRIM28, together with the RNA polymerase II (RNAPII)-interacting protein RECQ5, promotes SUMO2-PCNA conjugation but inhibits SUMO1-PCNA formation. This activity requires a PCNA-interacting protein (PIP) motif located within the bromodomain of TRIM28. In cells, TRIM28 interaction with PCNA on human chromatin is dependent on both transcription and RECQ5, and SUMO2-PCNA level correlates with TRIM28 expression. As a consequence, TRIM28 depletion led to RNAPII accumulation at TRC sites, and expression of a TRIM28 PIP mutant failed to suppress TRC-induced DNA breaks.


2010 ◽  
Vol 207 (12) ◽  
pp. 2631-2645 ◽  
Author(s):  
Véronique Witko-Sarsat ◽  
Julie Mocek ◽  
Dikra Bouayad ◽  
Nicola Tamassia ◽  
Jean-Antoine Ribeil ◽  
...  

Neutrophil apoptosis is a highly regulated process essential for inflammation resolution, the molecular mechanisms of which are only partially elucidated. In this study, we describe a survival pathway controlled by proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repairing of proliferating cells. We show that mature neutrophils, despite their inability to proliferate, express high levels of PCNA exclusively in their cytosol and constitutively associated with procaspases, presumably to prevent their activation. Notably, cytosolic PCNA abundance decreased during apoptosis, and increased during in vitro and in vivo exposure to the survival factor granulocyte colony-stimulating factor (G-CSF). Peptides derived from the cyclin-dependent kinase inhibitor p21, which compete with procaspases to bind PCNA, triggered neutrophil apoptosis thus demonstrating that specific modification of PCNA protein interactions affects neutrophil survival. Furthermore, PCNA overexpression rendered neutrophil-differentiated PLB985 myeloid cells significantly more resistant to TNF-related apoptosis-inducing ligand– or gliotoxin-induced apoptosis. Conversely, a decrease in PCNA expression after PCNA small interfering RNA transfection sensitized these cells to apoptosis. Finally, a mutation in the PCNA interdomain-connecting loop, the binding site for many partners, significantly decreased the PCNA-mediated antiapoptotic effect. These results identify PCNA as a regulator of neutrophil lifespan, thereby highlighting a novel target to potentially modulate pathological inflammation.


1995 ◽  
Vol 43 (12) ◽  
pp. 1217-1221 ◽  
Author(s):  
Y Morimoto ◽  
K Saga

Morphological observations of sweat glands showed degenerated debris of secretory cells in the secretory lumen in both apocrine and eccrine sweat glands. This suggested that dead secretory cells of human eccrine and apocrine sweat glands were released into the lumen and replaced by other cells. However, we did not know which type of cells replaced lost secretory cells. Therefore, we studied the proliferating cells in human eccrine and apocrine sweat glands by labeling S-phase cells in vitro with 5-bromo-2'-deoxyuridine (BrdUrd) and by immunostaining proliferation-associated proliferating cell nuclear antigen (PCNA) with anti-PCNA monoclonal antibody. BrdUrd and anti-PCNA antibody labeled a few secretory cells in eccrine and apocrine sweat glands, but neither method labeled myoepithelial cells. Luminal and peripheral cells of the eccrine and apocrine coiled duct were labeled with both BrdUrd and PCNA. However, we could not find any highly proliferative germinative cells in coiled ducts. Our results suggest that lost secretory cells could be replaced by proliferation of secretory cells themselves rather than by proliferation of myoepithelial cells or duct cells.


1992 ◽  
Vol 40 (9) ◽  
pp. 1269-1273 ◽  
Author(s):  
H K Wolf ◽  
K L Dittrich

We describe the effects of tissue preservation, fixation time, and hydrolytic treatment on the detection of proliferating cell nuclear antigen (PCNA) by immunoperoxidase staining with three commercial anti-PCNA antibodies (19A2, 19F4, PC10). Our goal was to provide guidelines for PCNA immunohistochemistry in formalin-fixed, paraffin-embedded specimens. In proliferative cell compartments, nuclear staining was achieved with all three antibodies. In some cases PCNA was also expressed in non-proliferative, histologically normal tissues associated with tumors or other lesions elsewhere. In most autopsy specimens PNCA immunoreactivity was markedly diminished as compared with similar surgical specimens. Incubation overnight with primary antibody at 4 degrees C enhanced PCNA immunoreactivity over incubation at 42 degrees C for 45 min. Pre-treatment with 2 N HCl did not increase staining. Staining with the PC10 antibody was much better preserved than staining with the antibodies 19A2 and 19F4 after prolonged formalin fixation of surgical specimens and in tissues obtained at autopsy. With all three antibodies, however, PCNA immunoreactivity was well preserved during formalin fixation for 8-24 hr and during fixation delays for 8 hr at room temperature. This indicates that PCNA is stable under conditions routinely encountered in diagnostic surgical pathology and facilitates its potential use as a diagnostic proliferation marker.


2019 ◽  
Vol 6 (10) ◽  
pp. 3687
Author(s):  
Sandip Pramanik ◽  
Subhayan Sur ◽  
Biswabandhu Bankura ◽  
Chinmay Kumar Panda ◽  
Dilip Kumar Pal

Background: Several molecular markers play important role in development and prognosis of renal cell carcinoma (RCC). Proliferating cell nuclear antigen (PCNA) and Ki-67 are such kind of molecular markers which may have prognostic significance in RCC and need to be studied about. Estimation of proliferation index by immunohistochemical expression analysis of PCNA and Ki-67 at different clinical stages of RCC samples and correlations of expression of the genes with different clinicopathological parameters between tumour tissue cells and adjacent normal tissue cells were the objectives.Methods: Thirty two patients of RCC who had been operated at one tertiary care institute of eastern India were taken for the study. Histopathological and immunohistochemistry analysis of PCNA and Ki-67 from tumour tissue and normal tissue were done. Patients who received radiotherapy, chemotherapy etc. before operation and who had benign tumours of the kidney in histopathological examination were excluded from the study.Results: Mean PCNA expression in normal renal tissue is 4.54%; whereas the clear cell RCC, papillary RCC and chromophobe RCC showed 49.81%, 50.75% and 66.50% of mean PCNA expression respectively. Mean expression of Ki-67 in normal tissues was 1.75%. Whereas the clear cell RCC, papillary RCC and chromophobe RCC showed 23.96%, 24.75% and 31% of mean Ki-67 expression respectively. Both molecular markers were positively correlated overall.Conclusions: PCNA and Ki-67 expression is increased in RCC when compared with normal tissues and it increases with Stage of RCC. PCNA expression is positively correlated with Ki-67 in different stages and histopathological groups of RCC. 


1993 ◽  
Vol 13 (5) ◽  
pp. 2882-2890 ◽  
Author(s):  
D Denis ◽  
P A Bullock

Studies of simian virus 40 (SV40) DNA replication in vitro have identified a small (approximately 30-nucleotide) RNA-DNA hybrid species termed primer-DNA. Initial experiments indicated that T antigen and the polymerase alpha-primase complex are required to form primer-DNA. Proliferating cell nuclear antigen, and presumably proliferating cell nuclear antigen-dependent polymerases, is not needed to form this species. Herein, we present an investigation of the stages at which primer-DNA functions during SV40 DNA replication in vitro. Hybridization studies indicate that primer-DNA is initially formed in the origin region and is subsequently synthesized in regions distal to the origin. At all time points, primer-DNA is synthesized from templates for lagging-strand DNA replication. These studies indicate that primer-DNA functions during both initiation and elongation stages of SV40 DNA synthesis. Results of additional experiments suggesting a precursor-product relationship between formation of primer-DNA and Okazaki fragments are presented.


Sign in / Sign up

Export Citation Format

Share Document