Material flow design and simulation for a glass panel recycling installation

2018 ◽  
Vol 36 (7) ◽  
pp. 653-660 ◽  
Author(s):  
Cicerone Laurentiu Popa ◽  
Costel Emil Cotet ◽  
Diana Popescu ◽  
Mihai Florin Solea ◽  
Simona Gheorghiţa Şaşcîm (Dumitrescu) ◽  
...  

The current paper presents the design of a glass panels recycling flow and the method used for establishing the optimal processing installation architecture. In the solution provided in the current research, a novel approach centred on applying digital twinning in the design of the requested processing architecture is presented. It involves designing the virtual prototype of the diffused processing architecture and modelling the glass waste flow as a hybrid material flow. Dedicated analysis and simulation software is then used for establishing installation architecture and the specific parameters for each processing and transport capacity. The assessment of different processing scenarios by virtual modelling and simulations can also be used for exploring options to increase productivity and profit for other different recycling architectures. The main practical value of the study consists of creating the means to improve the waste recycling of automotive windshields, float glass or construction glass panels with metallic meshes, all representing categories of waste insufficiently recycled in Romania. The simulation results of the study were validated by tests made on the glass panel recycling installation. Also, a recovery glass rate of minimum 85% of the amount of waste loaded into the recycling system was achieved, obtaining a waste recycling quantity three times higher than initially anticipated.

2020 ◽  
Vol 8 (6) ◽  
pp. 4070-4077

Injection molding is one of the very significant methodologies in the plastic manufacturing industry. Production of any shape in the injection molding, mold with cavity must require. For this mold making three phases were involved in this project starting from design, analysis, manufacturing respectively. The objective of this project is to introduce detailed steps on design mold and using the simulation software to analyze the material flow, temperature and pressure characteristics of the product. The product designed and analyzed for this project is SAFE HOLDER and CAM. The manufacturing of mold is done by using advanced machinery such as CNC. The design and analysis of this product and mold were made by the designing analysis software CATIA V5, ANSYS 15.0, which is then stimulated by the use of Fluid Flow (Fluent) tool. This project was very useful in knowing the fluid characteristic behavior subjected to flowing inside the mold and also observed the variation of values with respect to given values at each stage. In this project, the analysis performed with taking polypropylene as a fluid from propylene polymer and steel as solid material for the die with inlet values are 230℃ temperature and 15m/s velocity.


2020 ◽  
Vol Vol. 36 (No. 2) ◽  
pp. 49-57
Author(s):  
István Vajna ◽  
Anita Tangl

The case study shows the re-optimization of an initial new factory layout design with Value Stream Design (VSD). The VSD is a quantitative method and its’ final goal is to make a waste free optimized material flow. The primary goal of arrangement is to reduce transportation distances and frequencies, optimize human load. Initially the whole factory shop floor layout design was already made in push concept. The plans were made by production management, logistics, engineering department at the headquarter of the multinational automotive company with based on VDI2870 holistic concept linking strategy on tactics and operation. On the layout (v1.) the hundreds of machines were placed and arranged by CAD (Computer Design) engineers to fit the space. The factory building has 15,000 m2 with empty shop floor waiting for the final decisions for equipment. The factory production area was shared into six main production areas (P1-P6), which correlates with their product complexity of the product families. Each production area output can be finished product (FP) or semi-finished product (SFP) for the next production areas. To validate the whole factory layout it was necessary to involve lean experts that identified disadvantages and constraints. Without lean implementation the company’s transportation waste would be 49% more per year. The Value Stream Design importance nowadays is upgrading to a higher level, when the whole global business is changed, the labor force fluctuates, and the cost and delivery time reduction plays a vital role in the company’s profit and future. The research shows that if the decision taking is based on real data and facts the controlling and management can do its best in time. Using VSD and re-evaluating the transportation routes, frequency and costs is the first step to define a smooth, low cost, material flow (v2.). This development ensured the company to drive from push to pull production through mixed production system. Originally, the production flow was clockwise orientation. It was changed step by step to mixed production by eliminating work in process storages, implementing FIFO lanes, Milk Run, and Kanban. The total annual transportation distances were reduced from 4,905,000 m between the rump-up and serial production period. The warehouse storage size was reduced to 50% and implementation cost from €75,000 to €32,500. By eliminating work in process storages along production lines it was possible to open a new two way transportation road that also will serve the AGV’s operations in industry 4.0 projects. Due to decreased lead time the logistic labor productivity increased by 45%. Besides taking measurements for the VSD it was used Value Stream Mapping as a lean tool and an own designed VSD evaluation and a simulation software. The VSD team’s cooperative actions reduced the evaluation and validation time with 65% then it was initially planned. The implementations were evaluated from the rump-up phase to the first serial productions and the results were confirmed by controlling and management


Author(s):  
Marcin Kozłowski

Current standards and glass codes of design practice require that glazing used in architectural applications has to be resistant to, in addition to typical loads, also accidental events, in particular human impact, without showing damage that is disproportionate to the original cause. A case study was performed of an indoor glass lantern in a public building made from slender two-side supported glass panels with a complex geometry (36 ventilation holes). The paper provides structural assessments and results of in-situ experiments including static loading and soft body impact. Results from numerical simulations of impact loading on the glass panels complementing the experimental results are also presented.


2018 ◽  
Vol 8 (12) ◽  
pp. 2398 ◽  
Author(s):  
Shunsuke Nansai ◽  
Keichi Onodera ◽  
Prabakaran Veerajagadheswar ◽  
Mohan Rajesh Elara ◽  
Masami Iwase

Façade cleaning in high-rise buildings has always been considered a hazardous task when carried out by labor forces. Even though numerous studies have focused on the development of glass façade cleaning systems, the available technologies in this domain are limited and their performances are broadly affected by the frames that connect the glass panels. These frames generally act as a barrier for the glass façade cleaning robots to cross over from one glass panel to another, which leads to a performance degradation in terms of area coverage. We present a new class of façade cleaning robot with a biped mechanism that is able overcome these obstacles to maximize its area coverage. The developed robot uses active suction cups to adhere to glass walls and adopts mechanical linkage to navigate the glass surface to perform cleaning. This research addresses the design challenges in realizing the developed robot. Its control system consists of inverse kinematics, a fifth polynomial interpolation, and sequential control. Experiments were conducted in a real scenario, and the results indicate that the developed robot achieves significantly higher coverage performance by overcoming both negative and positive obstacles in a glass panel.


Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 207 ◽  
Author(s):  
Dongming Guo ◽  
Lizhen Huang

Construction and demolition waste (C&D waste) are widely recognized as the main form municipal solid waste, and its recycling and reuse are an important issue in sustainable city development. Material flow analysis (MFA) can quantify materials flows and stocks, and is a useful tool for the analysis of construction and demolition waste management. In recent years, material flow analysis has been continually researched in construction and demolition waste processing considering both single waste material and mixed wastes, and at regional, national, and global scales. Moreover, material flow analysis has had some new research extensions and new combined methods that provide dynamic, robust, and multifaceted assessments of construction and demolition waste. In this paper, we summarize and discuss the state of the art of material flow analysis research in the context of construction and demolition waste recycling and disposal. Furthermore, we also identify the current research gaps and future research directions that are expected to promote the development of MFA for construction and demolition waste processing in the field of sustainable city development.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Indika Thushari ◽  
Juckrit Vicheanteab ◽  
Dao Janjaroen

Abstract This study presents solid waste management planning in an urban green area, Bangkok, Thailand based on the material flow analysis (MFA) and life cycle assessment (LCA). Global warming potential (GWP) of four scenarios for handling solid waste generated in Chulalongkorn University Centenary Park, 2018 was assessed concerning the different ratios of waste recycling, composting, incineration, and landfilling. The results show that alternative systems proposed will result in lower GWP than the existing waste management strategy. The MFA results reveal that the final weights of solid waste ending up in a landfill are 98.8, 101.9, 68.2, and 44.8 t yr− 1 for scenarios 1, 2, 3, and 4, respectively. Increased rates of landfill diversion by increased recycling, composting, and incineration decreased the quantity of solid waste disposed to the landfill and improved the environmental profile of the park waste management system. The LCA results found landfilling to be the dominant source of greenhouse gas (GHG) burdens, while waste recycling was found to result in the reduction of GHG. The results highlight that the use of MFA and LCA as a combined tool to evaluate the environmental performance of solid waste management systems provides valuable information for policy and decision-makers.


2014 ◽  
Vol 708 ◽  
pp. 167-172
Author(s):  
Pavol Božek ◽  
Marek Kňažík ◽  
Vladimír Štollmann

The paper describes one practical implementation of the Digital Factory concept – design of a new production line using modern planning method of virtual testing and control of processes. The project covered graphical facility design, detailed design of operations and material flow simulation. This case study shows facility process planning, commission and in the end finding the optimization rules and corrective actions to increase existing casting line throughput. All phases of the project were carried out using simulation software, duration of the project was 6 months. Simulation software WITNESS has been used for material flow simulation.


Sign in / Sign up

Export Citation Format

Share Document