The effects of N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol on the flame retardancy and physical–mechanical properties of rigid polyurethane foams

2018 ◽  
Vol 36 (6) ◽  
pp. 535-545 ◽  
Author(s):  
Daikun Jia ◽  
Yi Tong ◽  
Jin Hu

Flame-retardant rigid polyurethane foams incorporating N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol have been prepared. After adding N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol, the density and compressive strength of the polyurethane foams were seen to decrease. The flame retardancy of the polyurethane foams has been characterized by limiting oxygen index, upper limit–94, and cone calorimeter tests. The polyurethane foam with 2.27 wt% N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol gave a highest limiting oxygen index of 33.4%, and the peak heat release rate of polyurethane foam reduced to 19.5 kW/m2 from 47.6 kW/m2 of PU-0 without N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol. Upper limit–94 revealed N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol did not change the burning rating, and all polyurethane foams had passed V-0 rating. The thermal stability of polyurethane foams has been investigated by thermogravimetric analyzer. N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol significantly increased the initial decomposition temperature of polyurethane foams and their residues. In addition, the morphology of residual char from the flame-retarded polyurethane foams after cone calorimeter tests has also been characterized by digital photographs. The results indicated that N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol significantly enhanced the strength and compatibility of the char layer formed by the polyurethane foams. These results indicate that N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol can improve both the quality and quantity of the char, which has a significant effect on the flame-retardant properties of the foam.

2017 ◽  
Vol 35 (2) ◽  
pp. 99-117 ◽  
Author(s):  
Qianqiong Zhao ◽  
Congyan Chen ◽  
Ruilan Fan ◽  
Yong Yuan ◽  
Yalin Xing ◽  
...  

A halogen-free flame retardant containing nitrogen and phosphorus, 2-[anilino-(6-oxobenzo[c][2,1]benzoxaphosphinin-6-yl)methyl]phenol (PDOP), has been synthesized by reaction of benzo[c][2,1]benzoxaphosphinine-6-oxide (DOPO) with 2-( N-phenyliminomethyl)phenol. Halogen-free flame-retardant rigid polyurethane foams (RPUF-PDOP) were prepared using PDOP as a flame retardant. The flammability was investigated using limiting oxygen index, a vertical burning test (UL-94), and a cone calorimeter. When PDOP (10 wt%) as flame retardant was added to RPUF (RPUF-PDOP10%), the limiting oxygen index value was increased from 18% to 27%, and a UL-94 V-0 rating was achieved; meanwhile, the peak heat release rate, total heat release, and the average mass-loss rates of RPUF-PDOP10% were reduced from 246 to 207 kW m−2, from 26.9 to 21.0 MJ/m2, and from 0.043 to 0.033 g/s, respectively. Especially, the initial decomposition temperature of RPUF-PDOP10% was decreased from 228°C to 209°C. The final residual char from decomposition of RPUF-PDOP10% was significantly increased up to 35.6%. The addition of PDOP did not markedly decrease the mechanical properties of the resulting flame-retardant RPUFs.


Author(s):  
A. A. Zakharchenko ◽  
M. A. Vaniev ◽  
A. B. Kochnov ◽  
S. V. Borisov ◽  
D. G. Nilidin ◽  
...  

The paper investigates the influence of melamine and ammonium polyphosphates on thermal degradation and flame retardancy of polyurethane foams (PUFs) composites, based on phosphorus-containing polyol. The limiting oxygen index of PUF was increased from 27,5 to 31,5 vol. % as compared to PUF composites based on phosphorus-containing polyol. The TGA of polyurethane foams demonstrated an increase of the thermal stability. Synthesized polyurethane foams have the highest category of combustion resistance.


2020 ◽  
Vol 17 (10) ◽  
pp. 760-771
Author(s):  
Qirui Gong ◽  
Niangui Wang ◽  
Kaibo Zhang ◽  
Shizhao Huang ◽  
Yuhan Wang

A phosphaphenanthrene groups containing soybean oil based polyol (DSBP) was synthesized by epoxidized soybean oil (ESO) and 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Soybean oil based polyol (HSBP) was synthesized by ESO and H2O. The chemical structure of DSBP and HSBP were characterized with FT-IR and 1H NMR. The corresponding rigid polyurethane foams (RPUFs) were prepared by mixing DSBP with HSBP. The results revealed apparent density and compression strength of RPUFs decreased with increasing the DSBP content. The cell structure of RPUFs was examined by scanning electron microscope (SEM) which displayed the cells as spherical or polyhedral. The thermal degradation and flame retardancy of RPUFs were investigated by thermogravimetric analysis, limiting oxygen index (LOI), and UL 94 vertical burning test. The degradation activation energy (Ea) of first degradation stage reduced from 80.05 kJ/mol to 37.84 kJ/mol with 80 wt% DSBP. The RUPF with 80 wt% DSBP achieved UL94 V-0 rating and LOI 28.3. The results showed that the flame retardant effect was mainly in both gas phase and condensed phase.


1993 ◽  
Vol 11 (5) ◽  
pp. 442-456 ◽  
Author(s):  
Jun Zhang ◽  
Michael E. Hall ◽  
A. Richard Horrocks

This paper is the first in a series of four which investigates the burning behaviour and the influence of flame retardant species on the flam mability of fibre-forming polymer and copolymers of acrylonitrile. A pressed powdered polymer sheet technique is described that enables a range of polymer compositions in the presence and absence of flame retardants to be assessed for limiting oxygen index, burning rate and char residue deter minations. The method offers a rapid, reproducible and convenient means of screening possible flame retardant systems, and LOI values compare favourably with those of films and fabrics comprising the same polymeric type. Burning rates, however, are sensitive to changes in physical sample character such as form (film vs. powder sheet) and density. Thus the technique forms an excellent basis for the generation of burning data which will enable comprehensive studies of acrylic polymer flammability and flame retardancy to be undertaken.


2020 ◽  
Vol 38 (3) ◽  
pp. 235-252
Author(s):  
Zhaojun Lin ◽  
Qianqiong Zhao ◽  
Ruilan Fan ◽  
Xiaoxue Yuan ◽  
Fuli Tian

In this work, a halogen-free intumescent combining phosphorus and nitrogen, flame-retardant 2-((2-hydroxyphenyl)(phenylamino)methyl5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (HAPO) was successfully synthesized. It had been synthesized by reaction of 5,5-dimethyl-1,3, 2-dioxphosphinane 2-oxide with Schiff base. Its chemical structure was characterized in detail by Fourier transform infrared spectroscopy, 1H NMR, and 31P NMR spectrum. The flame-retardant polyurethanes were prepared with different loadings of HAPO. The thermal properties, flame retardancy and combustion behavior of the pure polyurethane foam thermosets were investigated by a series of measurements involving thermogravimetric analysis, limited oxygen index measurement, UL-94 vertical burning test, and cone calorimeter test. The results of the aforementioned tests indicated that HAPO can significantly improve the flame retardancy as well as smoke inhibition performance of polyurethane foam. Compared with the PU-Neat, the limited oxygen index of flame-retardant polyurethanes (15%) thermoset was increased from 19.5% to 23.8% and its UL-94 reached V-0 rating. In addition, the cone test results showed that the heat release rate, total heat release, rate of smoke release, and total smoke production of flame-retardant polyurethanes (10%) were decreased obvious sly. The apparent morphology of carbon residue was characterized by scanning electron microscopy, and results revealed that the modified polyurethane foam can form dense carbon layer after combustion. Thermogravimetric analysis results also indicated that the char amount of flame-retardant polyurethanes was obviously increased compared with PU-Neat. Based on the above analysis, we can draw the conclusions which in the condensed phase, phosphorus-based acids from the degradation of HAPO, this could promote the formation of continuous and dense phosphorus-rich carbon layer. In the gas phase, the flame-retardant mechanism was ascribed to the quenching effect of phosphorus-based radicals and diluting effect by non-flammable gases.


2011 ◽  
Vol 418-420 ◽  
pp. 540-543 ◽  
Author(s):  
Ding Meng Chen ◽  
Yi Ping Zhao ◽  
Jia Jian Yan ◽  
Li Chen ◽  
Zhi Zhi Dong ◽  
...  

Polyurethane foams (PUFs) filled with several halogen-free flame retardants and composite halogen-free flame retardants were prepared. The flame retardant, thermal stable and mechanical properties of the PUFs were investigated. The results of limiting oxygen index (LOI) and thermogravimetric analysis (TGA) revealed that PUFs filled with dimethyl methylphosphonate (DMMP) had better flame retardancy compared with other flame retardants and DMMP degraded at a low temperature to form several phosphorated acids which accelerated the formation of char layer. Composite flame retardant of DMMP and melamine (MA) had a synergistic effect between phosphorus and nitrogen. The combination of DMMP and MA slightly altered the density of the PUFs. Results from the mechanical analysis revealed that with the increase in concentration of MA in the composite flame retardant of DMMP and MA, the tensile strength of PUFs reduced firstly and then increased up to a constant.


2017 ◽  
Vol 748 ◽  
pp. 51-54
Author(s):  
Pei Bang Dai ◽  
Lin Ying Yang ◽  
Ting Zheng ◽  
Chang Qin ◽  
Qi Chen Tang

A rigid polyurethane (PU) flame retardant composite foam was prepared by the compounding of polyols and diisocyanates with a modified intumescent flame retardant (MIFR). The MIFR was based on the three components of intumescent flame retardant normally used and was modified in a surfactant TX-10 solution. The flame retardancy of the PU flame retardant composite foams were evaluated by using the limiting oxygen index (LOI), the UL-94 (vertical flame) test and scanning electron microscopy (SEM). When MIFR was fixed at 20.0 wt% in PU/MIFR composite foams, the MIFR could enhance the flame retardancy and pass V-0 rating of UL-94 test. The microstructures observed by SEM demonstrate that a suitable amount of MIFR can promote formation of compact intumescent charred layers in PU foams.


Sign in / Sign up

Export Citation Format

Share Document