Halogen-free flame-retardant rigid polyurethane foam with a nitrogen–phosphorus flame retardant

2017 ◽  
Vol 35 (2) ◽  
pp. 99-117 ◽  
Author(s):  
Qianqiong Zhao ◽  
Congyan Chen ◽  
Ruilan Fan ◽  
Yong Yuan ◽  
Yalin Xing ◽  
...  

A halogen-free flame retardant containing nitrogen and phosphorus, 2-[anilino-(6-oxobenzo[c][2,1]benzoxaphosphinin-6-yl)methyl]phenol (PDOP), has been synthesized by reaction of benzo[c][2,1]benzoxaphosphinine-6-oxide (DOPO) with 2-( N-phenyliminomethyl)phenol. Halogen-free flame-retardant rigid polyurethane foams (RPUF-PDOP) were prepared using PDOP as a flame retardant. The flammability was investigated using limiting oxygen index, a vertical burning test (UL-94), and a cone calorimeter. When PDOP (10 wt%) as flame retardant was added to RPUF (RPUF-PDOP10%), the limiting oxygen index value was increased from 18% to 27%, and a UL-94 V-0 rating was achieved; meanwhile, the peak heat release rate, total heat release, and the average mass-loss rates of RPUF-PDOP10% were reduced from 246 to 207 kW m−2, from 26.9 to 21.0 MJ/m2, and from 0.043 to 0.033 g/s, respectively. Especially, the initial decomposition temperature of RPUF-PDOP10% was decreased from 228°C to 209°C. The final residual char from decomposition of RPUF-PDOP10% was significantly increased up to 35.6%. The addition of PDOP did not markedly decrease the mechanical properties of the resulting flame-retardant RPUFs.

2011 ◽  
Vol 418-420 ◽  
pp. 540-543 ◽  
Author(s):  
Ding Meng Chen ◽  
Yi Ping Zhao ◽  
Jia Jian Yan ◽  
Li Chen ◽  
Zhi Zhi Dong ◽  
...  

Polyurethane foams (PUFs) filled with several halogen-free flame retardants and composite halogen-free flame retardants were prepared. The flame retardant, thermal stable and mechanical properties of the PUFs were investigated. The results of limiting oxygen index (LOI) and thermogravimetric analysis (TGA) revealed that PUFs filled with dimethyl methylphosphonate (DMMP) had better flame retardancy compared with other flame retardants and DMMP degraded at a low temperature to form several phosphorated acids which accelerated the formation of char layer. Composite flame retardant of DMMP and melamine (MA) had a synergistic effect between phosphorus and nitrogen. The combination of DMMP and MA slightly altered the density of the PUFs. Results from the mechanical analysis revealed that with the increase in concentration of MA in the composite flame retardant of DMMP and MA, the tensile strength of PUFs reduced firstly and then increased up to a constant.


2018 ◽  
Vol 36 (6) ◽  
pp. 535-545 ◽  
Author(s):  
Daikun Jia ◽  
Yi Tong ◽  
Jin Hu

Flame-retardant rigid polyurethane foams incorporating N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol have been prepared. After adding N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol, the density and compressive strength of the polyurethane foams were seen to decrease. The flame retardancy of the polyurethane foams has been characterized by limiting oxygen index, upper limit–94, and cone calorimeter tests. The polyurethane foam with 2.27 wt% N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol gave a highest limiting oxygen index of 33.4%, and the peak heat release rate of polyurethane foam reduced to 19.5 kW/m2 from 47.6 kW/m2 of PU-0 without N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol. Upper limit–94 revealed N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol did not change the burning rating, and all polyurethane foams had passed V-0 rating. The thermal stability of polyurethane foams has been investigated by thermogravimetric analyzer. N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol significantly increased the initial decomposition temperature of polyurethane foams and their residues. In addition, the morphology of residual char from the flame-retarded polyurethane foams after cone calorimeter tests has also been characterized by digital photographs. The results indicated that N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol significantly enhanced the strength and compatibility of the char layer formed by the polyurethane foams. These results indicate that N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol can improve both the quality and quantity of the char, which has a significant effect on the flame-retardant properties of the foam.


2020 ◽  
Vol 32 (6) ◽  
pp. 710-718
Author(s):  
Zhengzhou Wang ◽  
Xin Gao ◽  
Wenfeng Li

Flame-retardant epoxy (EP) resin/cyanate ester (CE) composites were prepared with 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and wollastonite (Wo). The combustion behavior of the flame-retardant EP/CE composites was investigated by limiting oxygen index (LOI), UL-94, and cone calorimeter tests. It is found that the EP/CE composite containing 7 wt% DOPO and 3 wt% Wo (sample 7DO/3Wo/EP/CE) exerts the best flame retardancy (LOI 35.5% and UL-94 V-0 rating). The peak heat release rate and total heat release of sample 7DO/3Wo/EP/CE increase slightly, while total smoke release decreases about 14% compared with the EP/CE composite containing 10 wt% DOPO (sample 10DO/EP/CE). Thermal studies indicate that the glass transition temperature and temperature at 5% mass loss of sample 7DO/3Wo/EP/CE are higher than that of sample 10DO/EP/CE. Moreover, the mechanical properties of EP/CE composites were investigated.


2020 ◽  
Vol 38 (4) ◽  
pp. 333-347
Author(s):  
Lichen Zhang ◽  
Deqi Yi ◽  
Jianwei Hao

The flame retardant poly(diallyldimethylammonium) and polyphosphate polyelectrolyte complex and the curing agent m-Phenylenediamine were blended into diglycidyl ether of bisphenol A (DGEBA)-type epoxy resin to prepare flame-retardant epoxy resin thermosets. The effects of poly(diallyldimethylammonium) and polyphosphate on fire retardancy and thermal degradation behavior of epoxy resins (EP)/poly(diallyldimethylammonium) and polyphosphate composites were tested by Limiting Oxygen Index, UL-94, cone calorimeter tests, and thermogravimetric analysis and compared with pure EP. The results showed that the Limiting Oxygen Index value of EP/poly(diallyldimethylammonium) and polyphosphate composite could reach 31.9%, and UL-94 V-0 rating at 10 wt% poly(diallyldimethylammonium) and polyphosphate loading. Meanwhile the cone calorimetry peak heat release rate and total heat release were reduced up to 55.2% and 21.8%, respectively; smoke production rate and total smoke production were also declined significantly, compared with those of pure epoxy resins. Poly(diallyldimethylammonium) and polyphosphate played a very good flame-retardant effect on epoxy resins.


2012 ◽  
Vol 490-495 ◽  
pp. 3366-3369 ◽  
Author(s):  
Cong Liu

The flame-retardant of Lanthanum phenylphosphinate(LaPi) was prepared and its combination with intumescent flame retardant (IFR) in polypropylene (PP) was analysed using thermogravimetric analysis (TGA), limiting oxygen index (LOI) and the UL-94 test. Compared with using IFR alone, using the combination of LaPi and IFR gained the better classification in the UL 94 test thanks to the combination of the different mechanisms. When 20 wt% loading of flame retardant of LaPi and IFR, a halogen-free V-0 PP material was achieved with a LOI of 31%.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3656
Author(s):  
Hangfeng Yang ◽  
Hangbo Yue ◽  
Xi Zhao ◽  
Minzimo Song ◽  
Jianwei Guo ◽  
...  

A novel halogen-free flame retardant containing sulfonamide, 1,3,5,7-tetrakis (phenyl-4-sulfonamide) adamantane (FRSN) was synthesized and used for improving the flame retardancy of largely used polycarbonate (PC). The flame-retardant properties of the composites with incorporation of varied amounts of FRSN were analyzed by techniques including limited oxygen index, UL 94 vertical burning, and cone calorimeter tests. The new FR system with sulfur and nitrogen elements showed effective improvements in PC’s flame retardancy: the LOI value of the modified PC increased significantly, smoke emission suppressed, and UL 94 V-0 achieved. Typically, the composite with only 0.08 wt% of FRSN added (an ultralow content) can increase the limiting oxygen index (LOI) value to 33.7% and classified as UL 94 V-0 rating. Furthermore, the mechanical properties and SEM morphology indicated that the FRSN has very good compatibility with PC matrix, which, in turn, is beneficial to the property enhancement. Finally, the analysis of sample residues after burning tests showed that a high portion of char was formed, contributing to the PC burning protection. This synthesized flame retardant provides a new way of improving PC’s flame retardancy and its mechanical property.


2017 ◽  
Vol 748 ◽  
pp. 51-54
Author(s):  
Pei Bang Dai ◽  
Lin Ying Yang ◽  
Ting Zheng ◽  
Chang Qin ◽  
Qi Chen Tang

A rigid polyurethane (PU) flame retardant composite foam was prepared by the compounding of polyols and diisocyanates with a modified intumescent flame retardant (MIFR). The MIFR was based on the three components of intumescent flame retardant normally used and was modified in a surfactant TX-10 solution. The flame retardancy of the PU flame retardant composite foams were evaluated by using the limiting oxygen index (LOI), the UL-94 (vertical flame) test and scanning electron microscopy (SEM). When MIFR was fixed at 20.0 wt% in PU/MIFR composite foams, the MIFR could enhance the flame retardancy and pass V-0 rating of UL-94 test. The microstructures observed by SEM demonstrate that a suitable amount of MIFR can promote formation of compact intumescent charred layers in PU foams.


2011 ◽  
Vol 391-392 ◽  
pp. 204-208
Author(s):  
Xiao Ping Hu ◽  
Yu Yang Guo ◽  
Quan Min Xu ◽  
Hui Min Heng ◽  
Liang Jun Li

A novel intumescent flame retardant oligomer containing phosphorous-nitrogen structure (PSPTR) was synthesized and characterized by Fourier Transform Infrared (FTIR) and Mass Spectrometry (MS). The thermal behavior of PSPTR was investigated by thermogravimetric analysis (TGA). The TGA data shows that PSPTR has a high initial temperature of thermal degradation and a high char residue of 41.18wt% at 700 . A novel intumescent flame retardant (IFR) system, which is composed of PSPTR and novolac phenol (NP), was used to impart flame retardancy of ABS. The combustion behaviors of the ABS/IFR composites were investigated by Limiting Oxygen Index (LOI) and UL-94 tests. When the content of IFR (PSPTR:NP=1:1 mass ratio) is 30 wt%, the LOI value of ABS/IFR reaches 28.2, and the vertical burning test reaches UL-94 V-1 rating.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xuejun Lai ◽  
Jiedong Qiu ◽  
Hongqiang Li ◽  
Xingrong Zeng ◽  
Shuang Tang ◽  
...  

An efficient caged phosphate charring agent named PEPA was synthesized and combined with melamine pyrophosphate (MPP) to flame-retard polypropylene (PP). The effects of MPP/PEPA on the flame retardancy and thermal degradation of PP were investigated by limiting oxygen index (LOI), vertical burning test (UL-94), cone calorimetric test (CCT), and thermogravimetric analysis (TGA). It was found that PEPA showed an outstanding synergistic effect with MPP in flame retardant PP. When the content of PEPA was 13.3 wt% and MPP was 6.7 wt%, the LOI value of the flame retardant PP was 33.0% and the UL-94 test was classed as a V-0 rating. Meanwhile, the peak heat release rate (PHRR), average heat release rate (AV-HRR), and average mass loss rate (AV-MLR) of the mixture were significantly reduced. The flame-retardant and thermal degradation mechanism of MPP/PEPA was investigated by TGA, Fourier transform infrared spectroscopy (FTIR), TG-FTIR, and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDXS). It revealed that MPP/PEPA could generate the triazine oligomer and phosphorus-containing compound radicals which changed the thermal degradation behavior of PP. Meanwhile, a compact and thermostable intumescent char was formed and covered on the matrix surface to prevent PP from degrading and burning.


2021 ◽  
Author(s):  
Na Li ◽  
Panpan Chen ◽  
Dongni Liu ◽  
Gaowei Kang ◽  
Liu Liu ◽  
...  

Abstract Cotton fibers as original materials of cotton fabrics have a widely application due to its perfect hygroscopicity, air permeability and largest annual output. However, cotton materials have potential safety hazard during its application because of flammability (limiting oxygen index is about 18%). In order to improve the flame retardancy of cotton fibers and reduce the damage of its mechanical properties, novel P/Si based flame retardant (PFR) nanoparticles were synthesized by one-step radical polymerization. Vinyl phosphoric acid and tetramethyl divinyl disiloxane were introduced into the nanoparticles. The structure, morphology and thermal stability of PFR was characterized by fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis test (TGA). Durable flame retardant cotton fibers were prepared by dip-coating and plasma induced crosslinking methods. Micro-calorimeter (MCC) characterization showed that the peak of heat release rate (pHRR) and the total heat release were reduced by 47.3% and 29.8% for modified cotton fibers compared with pure cotton fibers. Limiting oxygen index (LOI) of modified cotton fibers was increased to 27%. The residue carbon of modified cotton fibers was 19.0% at 700 o C, while the value of pure cotton fibers was 3.0%. Besides, durability of the modified cotton fibers was approved by cyclic washing test. In addition, flame retardant mechanism was revealed by collecting and analyzing condensed and gaseous pyrolysis products. The data of FE-SEM for residue carbon, FT-IR spectra of products at different pyrolysis temperatures and pyrolysis gas chromatography mass spectrometry (Py-GC-MS) showed that PFR was a synergistic flame retardant contained barrier and quenching effecting applied on cotton materials.


Sign in / Sign up

Export Citation Format

Share Document