Cone calorimeter evaluation on fire resistance of rigid polyurethane foams filled with nanoclay/intumescent flame retardant materials

Author(s):  
Bilal Aydoğan ◽  
◽  
Nazım Usta ◽  
2018 ◽  
Vol 36 (6) ◽  
pp. 535-545 ◽  
Author(s):  
Daikun Jia ◽  
Yi Tong ◽  
Jin Hu

Flame-retardant rigid polyurethane foams incorporating N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol have been prepared. After adding N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol, the density and compressive strength of the polyurethane foams were seen to decrease. The flame retardancy of the polyurethane foams has been characterized by limiting oxygen index, upper limit–94, and cone calorimeter tests. The polyurethane foam with 2.27 wt% N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol gave a highest limiting oxygen index of 33.4%, and the peak heat release rate of polyurethane foam reduced to 19.5 kW/m2 from 47.6 kW/m2 of PU-0 without N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol. Upper limit–94 revealed N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol did not change the burning rating, and all polyurethane foams had passed V-0 rating. The thermal stability of polyurethane foams has been investigated by thermogravimetric analyzer. N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol significantly increased the initial decomposition temperature of polyurethane foams and their residues. In addition, the morphology of residual char from the flame-retarded polyurethane foams after cone calorimeter tests has also been characterized by digital photographs. The results indicated that N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol significantly enhanced the strength and compatibility of the char layer formed by the polyurethane foams. These results indicate that N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol can improve both the quality and quantity of the char, which has a significant effect on the flame-retardant properties of the foam.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 109 ◽  
Author(s):  
Xiaochun Hu ◽  
Zhao Sun ◽  
Xiaojun Zhu ◽  
Zhiqiang Sun

In this study, montmorillonite (MMT) was used as an inorganic synergist to prepare the water-based intumescent flame retardant (IFR) ornamental coating for plywood. Results indicate that the 7 wt.% MMT modified IFR coating (No. 3) possess the best fire resistance (longer than 20 min) of the tested samples according to the fire performance, which significantly declines the specific extinction area by 44.12 m2·kg−1 compared to the coating without MMT by cone calorimeter. In addition, characterizations such as XPS, XRD, TG, SEM and FTIR were characterized to investigate the surface and bulk properties as well as the morphology of MMT synergized water-based IFR coating. It is revealed that the residual nitrogenous polyaromatic structure and 25.5% residual mass in the No. 3 coating are a result of the effect of MMT on the antioxidation properties of the char layer.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3095 ◽  
Author(s):  
Yongjun Chen ◽  
Yuanfang Luo ◽  
Xiaohui Guo ◽  
Lijuan Chen ◽  
Demin Jia

In this study, a nitrogen–phosphorus intumescent flame-retardant 3-(N-diphenyl phosphate) amino propyl triethoxy silane (DPES), the ionic liquid (IL) of 1-butyl-3-methyl-imidazole phosphate, and a phosphorous-containing ionic liquid-modified expandable graphite (IL-EG), were synthesized, and their molecular structures were characterized. The flame-retardant rigid polyurethane foams (RPUFs) were compounded with synergistic flame-retardant IL-EG/DPES to study the effects of the combination IL-EG and DPES on the pore structure, mechanical properties, thermal decomposition behavior and thermal decomposition mechanism of RPUF. The results showed that IL-EG/DPES had good thermal stability, and an excellent expansibility and char yield. The flame-retardant RPUF, modified with IL-EG and DPES at the ratio of 1:1, had a relatively uniform pore size, the highest compressive strength, and an excellent flame-retardant performance due to the form interwoven hydrogen bonds between IL-EG and DPES, as well as the new synergistic flame-retardant coating on the RPUF surface to restrict the transfer of gas or heat into the PU matrix.


Sign in / Sign up

Export Citation Format

Share Document