The effect of tobacco smoke exposure on the generation of reactive oxygen species and cellular membrane damage using co-culture model of blood brain barrier with astrocytes

2017 ◽  
Vol 33 (6) ◽  
pp. 530-536 ◽  
Author(s):  
Seung-Beom Seo ◽  
Eun Sang Choe ◽  
Kwang-Sik Kim ◽  
Soon-Mi Shim

Brain tissue is known to be vulnerable to the exposure by tobacco smoke. Tobacco smoke can induce generation of reactive oxygen species (ROS), causing inflammatory activity and blood–brain barrier (BBB) impairment. The aim of the present study was to investigate the effect of tobacco smoke on cell cytotoxicity, generation of ROS, and cellular membrane damage in astrocytes and BBB using a co-culture system. Cell viability of U373MG cells was reduced in a dose-dependent manner, ranging from 96.7% to 40.3% by tobacco smoke condensate (TSC). Cell viability of U373MG co-cultured with human brain microvascular endothelial cells (HBMECs) was 104.9% at the IC50 value of TSC. Trans-epithelial electric resistance values drastically decreased 80% following 12-h incubation. The value was maintained until 48 h and then increased at 72-h incubation (85%). It then decreased to 75% at 120 h. Generation of ROS increased in a dose-dependent manner, ranging from 102.7% to 107.9%, when various concentrations of TSC (4–16 mg/mL) were administered to the U373MG monoculture. When TSC was added into U373MG co-cultured with HBMECs, production of ROS ranged from 101.7% to 102.6%, slightly increasing over 12 h. Maximum exposure-generated ROS of 104.8% was reached at 24 h. Cell cytotoxicity and oxidative stress levels in the U373MG co-culture model system with HBMECs were lower than U373MG monoculture. HBMECs effectively acted as a barrier to protect the astrocytes (U373MG) from toxicity of TSC.

2020 ◽  
Vol 21 (24) ◽  
pp. 9409
Author(s):  
Na-Ri Lee ◽  
Ruo Yu Meng ◽  
So-Young Rah ◽  
Hua Jin ◽  
Navin Ray ◽  
...  

Ursolic acid (UA) possesses various pharmacological activities, such as antitumorigenic and anti-inflammatory effects. In the present study, we investigated the mechanisms underlying the effects of UA against esophageal squamous cell carcinoma (ESCC) (TE-8 cells and TE-12 cells). The cell viability assay showed that UA decreased the viability of ESCC in a dose-dependent manner. In the soft agar colony formation assay, the colony numbers and size were reduced in a dose-dependent manner after UA treatment. UA caused the accumulation of vacuoles and LC3 puncta, a marker of autophagosome, in a dose-dependent manner. Autophagy induction was confirmed by measuring the expression levels of LC3 and p62 protein in ESCC cells. UA increased LC3-II protein levels and decreased p62 levels in ESCC cells. When autophagy was hampered using 3-methyladenine (3-MA), the effect of UA on cell viability was reversed. UA also significantly inhibited protein kinase B (Akt) activation and increased p-Akt expression in a dose-dependent manner in ESCC cells. Accumulated LC3 puncta by UA was reversed after wortmannin treatment. LC3-II protein levels were also decreased after treatment with Akt inhibitor and wortmannin. Moreover, UA treatment increased cellular reactive oxygen species (ROS) levels in ESCC in a time- and dose-dependent manner. Diphenyleneiodonium (an ROS production inhibitor) blocked the ROS and UA induced accumulation of LC3-II levels in ESCC cells, suggesting that UA-induced cell death and autophagy are mediated by ROS. Therefore, our data indicate that UA inhibits the growth of ESCC cells by inducing ROS-dependent autophagy.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770163 ◽  
Author(s):  
Niharika Sinha ◽  
Prashanta Kumar Panda ◽  
Prajna Paramita Naik ◽  
Tapas K Maiti ◽  
Sujit K Bhutia

The accumulating evidences show that Abrus agglutinin, a plant lectin, displays a broad range of anticancer activity including cancer-specific induction of apoptosis; however, the underlying molecular mechanism of Abrus agglutinin–induced oral cancer stem cell elimination remains elusive. Our data documented that Abrus agglutinin effectively downregulated the CD44+ expression with the increased CD44− population in different oral cancer cells. After 24-h Abrus agglutinin treatment, FaDu cells were quantified for orosphere formation in ultra-low attachment plates and data showed that Abrus agglutinin inhibited the number and size of orosphere in a dose-dependent manner in FaDu cells. Furthermore, Abrus agglutinin hindered the plasticity of FaDu orospheres as supported by reduced sphere formation and downregulated the self-renewal property via inhibition of Wnt-β-catenin signaling pathway. Introduction of LiCl, a glycogen synthase kinase 3β inhibitor, rescued the Abrus agglutinin–stimulated inhibition of β-catenin and phosphorylated glycogen synthase kinase 3β in FaDu cell–derived orospheres confirming importance of Wnt signaling in Abrus agglutinin–mediated inhibition of stemness. In this connection, our data showed that Abrus agglutinin restrained proliferation and induced apoptosis in FaDu-derived cancer stem cells in dose-dependent manner. Moreover, western blot data demonstrated that Abrus agglutinin increased the Bax/Bcl-2 ratio with activation of poly(adenosine diphosphate–ribose) polymerase and caspase-3 favoring apoptosis induction in orospheres. Abrus agglutinin induced reactive oxygen species accumulation in orospheres and pretreatment of N-acetyl cysteine, and a reactive oxygen species scavenger inhibited Abrus agglutinin–mediated caspase-3 activity and β-catenin expression indicating reactive oxygen species as a principal regulator of Wnt signaling and apoptosis. In conclusion, Abrus agglutinin has a potential role as an integrative therapeutic approach for combating oral cancer through targeting self-renewability of orospheres via reactive oxygen species–mediated apoptosis.


2002 ◽  
Vol 46 (10) ◽  
pp. 3113-3117 ◽  
Author(s):  
Daisuke Kobayashi ◽  
Kei Kondo ◽  
Nobuyuki Uehara ◽  
Seiko Otokozawa ◽  
Naoki Tsuji ◽  
...  

ABSTRACT We investigated the significance of endogenous reactive oxygen species (ROS) produced by fungi treated with miconazole. ROS production in Candida albicans was measured by a real-time fluorogenic assay. The level of ROS production was increased by miconazole at the MIC (0.125 μg/ml) and was enhanced further in a dose-dependent manner, with a fourfold increase detected when miconazole was used at 12.5 μg/ml. This increase in the level of ROS production was completely inhibited by pyrrolidinedithiocarbamate (PDTC), an antioxidant, at 10 μM. In a colony formation assay, the decrease in cell viability associated with miconazole treatment was significantly prevented by addition of PDTC. Moreover, the level of ROS production by 10 clinical isolates of Candida species was inversely correlated with the miconazole MIC (r = −0.8818; P < 0.01). These results indicate that ROS production is important to the antifungal activity of miconazole.


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095366
Author(s):  
Yun-Hee Rhee ◽  
Ye Kyu Park ◽  
Jong-Soo Kim

The aim of this study was to investigate the anti-inflammatory properties of Pandanus conoideus Lamk (red fruit oil [RFO]) and establish the signal pathway of the leading compounds. RAW 264.7 murine macrophage cells were used with lipopolysaccharide (LPS). Cell viability and the pro-inflammatory factors were investigated using MTT assay, real-time polymerase chain reaction (PCR), western blot analysis, and enzyme-linked immunosorbent assay. The quantification of leading compounds in RFO was performed using high-performance liquid chromatography (HPLC). RFO did not reduce RAW 264.7 cell viability. RFO significantly reduced the production of nitric oxide (NO), cyclooxygenase-2, and prostaglandin E2, and both the protein level and mRNA level of inducible NO synthase in LPS-induced macrophages. RFO also regulated the reactive oxygen species (ROS) in LPS-induced macrophages. RFO attenuated the translocation of the nuclear factor κB (NF-κB) p65 subunit, phosphorylation of I-κB, p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. HPLC analysis determined that 1 g of RFO had 14.05 ± 0.8 mg of β-cryptoxanthin and 7.4 ± 0.7 mg of β-carotene. In conclusion, RFO provides an anti-inflammatory effect by regulating ROS and NF-κB through mitogen-activated protein kinase due to antioxidant activity.


2015 ◽  
Vol 35 (6) ◽  
pp. 598-607 ◽  
Author(s):  
S-W Li ◽  
C-M Liu ◽  
J Guo ◽  
AM Marcondes ◽  
J Deeg ◽  
...  

Background: Hepatic iron overload is common in patients with myelodysplastic syndromes undergoing hematopoietic cell transplantation (HCT) and may predispose to peri- and post-HCT toxicity. To better understand the mechanisms of iron overload-induced liver injury, we examined the effects of iron overload induced by ferric ammonium citrate (FAC) on oxidative stress and apoptosis signaling pathway in human hepatic cell line HH4. Methods and Results: Hepatic HH4 cells were exposed to FAC to force iron uptake, and cellular responses were determined. Incubation with 5 mM FAC resulted in increased intracellular iron content in a time-dependent manner. High concentration of FAC impaired cell viability and increased level of reactive oxygen species (ROS), and addition of antioxidant reagent such as glutathione or N-acetylcysteine dramatically reduced FAC-induced intracellular ROS generation. FAC overload significantly increased the phosphorylation of inhibitor of κB-α, p38 mitogen-activated protein kinase (MAPK), and nuclear factor κ light chain enhancer of activated B cells (NF-κB) p65 and promoted the nuclear translocation of NF-κB p65. Knockdown of Fas and Bid expression by small interfering RNA in iron-treated HH4 cells resulted in restoration of cell viability. Conclusions: We reported that FAC treatment is capable of inducing both extrinsic death receptor and intrinsic mitochondrial signaling pathway-mediated HH4 cells apoptosis through ROS-activated p38 MAPK and NF-κB pathways.


2017 ◽  
Vol 42 (2) ◽  
pp. 685-696 ◽  
Author(s):  
Xiaoxv Dong ◽  
Jing Fu ◽  
Xingbin Yin ◽  
Changhai Qu ◽  
Chunjing Yang ◽  
...  

Background/Aims: Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone), an anthraquinone active compounds, is isolated from some traditional medicinal plants such as Rheum palmatum L. and Cassia occidentalis, which induce hepatotoxicity in rats. The aim of this study was to determine potential cytotoxic effects of aloe-emodin on HepaRG cells and to define the underlying mechanism. Methods: MTT was used to evaluate cell viability. Apoptotic cell death was analyzed via Annexin V-FITC/PI double staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were determined by flow cytometry, while the expression of apoptosis-related proteins was determined by Western blot analysis. Results: Treatment with aloe-emodin significantly reduced cell viability and induced apoptosis in HepaRG cells in a dose- and time-dependent manner. It provoked ROS generation and depolarization of MMP in HepaRG cells when compared with controls. Aloe-emodin dose-dependently increased release of mitochondrial cytochrome c, and levels of Fas, p53, p21, Bax/Bcl-2 ratio, as well as activation of caspase-3, caspase-8, caspase-9, and subsequent cleavage of poly(ADP-ribose)polymerase (PARP). It also induced S-phase cell cycle arrest by increasing the expression of p21 and cyclin E proteins while significantly decreasing the expression of cyclin A and CDK2. Conclusion: These results suggest that aloe-emodin inhibits cell proliferation and induces apoptosis in HepaRG cells, most probably through a mechanism involving both Fas death pathway and the mitochondrial pathway by generation of ROS. These findings underscore the need for risk assessment of human exposure to aloe-emodin.


2001 ◽  
Vol 31 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Tobias W. Fischer ◽  
Georg Scholz ◽  
Brunhilde Knöll ◽  
Uta-Christina Hipler ◽  
Peter Elsner

2007 ◽  
Vol 85 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Xu-Bin Jing ◽  
Xian-Bin Cai ◽  
Hui Hu ◽  
Su-Zuan Chen ◽  
Bin-Ming Chen ◽  
...  

cis-Diamminedichloroplatinum (CDDP), commonly know as cisplatin, is a well known DNA-damaging agent, which is highly active in suppressing the proliferation of tumor cells. However, it is not clear that CDDP can induce growth inhibition of esophagus cancer cells. Using the cell line EC-109 from the esophagus, we found that CDDP would induce apoptotic responses. The addition of CDDP to cells led to the inhibition of growth in a time- and dose-dependent manner. CDDP generated reactive oxygen species (ROSs) in cells, which brought about a reduction in the intracellular mitochondrial transmembrane potential (Δψm), leading to apoptosis. Our findings demonstrate that ROSs, and the resulting oxidative stress, play a pivotal role in apoptosis. Preincubation of EC-109 cells with the hydrogen-peroxide-scavenging enzyme catalase partially inhibited the following: (i) the production of ROS; (ii) the disruption of the Δψm; and (iii) apoptosis. These results indicate that the enhancement of the generation of ROS and the disruption of Δψm are events involved in the apoptotic pathway of EC-109 induced by CDDP.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3797-3797
Author(s):  
Paul S Hole ◽  
Lorna Pearn ◽  
Philip E James ◽  
Alan Burnett ◽  
Richard L Darley ◽  
...  

Abstract Activating RAS mutations are one of the most frequent molecular abnormalities associated with acute myeloid leukemia (AML) and have also been linked to induction of reactive oxygen species (ROS). ROS play an important role in immune defense but also regulate intracellular signaling and are contributing factors in several cancer models especially those associated with oncogenic Ras activity. Here we report that constitutively active Ras expression strongly promotes production of ROS in human CD34+ cells and that this is linked to growth-factor independent survival and hyper-phosphorylation of kinases in these cells. Expression of H-RasG12V in human CD34+ cells was achieved by retroviral infection using a vector co-expressing green fluorescent protein (GFP). Using luminol-based chemiluminescence, we found that mutant Ras induced constitutive production of superoxide anions (O2−) in CD34+ cells (6.3±2.1 fold greater than controls; p<0.01). Electron paramagnetic resonance spectroscopy confirmed the presence of O2−. Hydrogen peroxide (H2O2) (which forms via dismutation of O2minus;) was also elevated (2.7±0.1μM H2O2 vs <0.5μM in controls, measured using Amplex Red). Superoxide (and H2O2) can be produced via the NOX enzyme family of oxidases. NOX inhibitor treatment dramatically suppressed O2− production induced by mutant Ras (100±0.1% inhibition with diphenyleneiodonium, p<0.001) whereas Rotenone, a mitochondrial O2− inhibitor had no effect, suggesting NOX proteins are the predominant source of ROS in these cells. Consistent with this, Ras expressing cells showed greater accumulation of the NOX2 regulatory proteins Rac, p47phox and p67phox in the plasma membrane. Ras also strongly promoted the survival of human CD34+ cells following incubation for 48 hours in medium without growth factors or serum (Ras 59±3.3% viable vs control 26±3.9%; p<0.001, as determined by Annexin V and 7-AAD staining). Growth factor-independent survival of Ras-expressing (but not control) cells decreased significantly (p<0.001; ANOVA) in a cell density-dependent manner, suggesting the presence of autocrine/paracrine pro-survival factors. In order to determine whether these factors could influence the survival of control cells in a paracrine fashion, control CD34+ progenitors (expressing GFP) were co-cultured with an increasing proportion of cells expressing mutant Ras (co-expressing DsRed), enabling analysis of individual cell populations in mixed culture by flow cytometry. Ras expressing cells significantly promoted survival of co-cultured control cells in a ‘dose’-dependent manner; control cells 33±1.5% viable in 1:1 co-culture vs 21±5.1% when cultured alone (p<0.01, ANOVA). In addition, initial data shows treatment with catalase suppressed control cell survival under co-culture conditions. This suggests that the presence of H2O2 is necessary in mediating this pro-survival effect. Ras-expressing cells also demonstrated constitutive phosphorylation of a wide variety of proteins associated with growth and survival including Akt, PDK-1 and PKC which have previously shown to be a critical effectors of Ras in CD34+cells (Darley et al, Blood, 2007). H2O2 promotes protein phosphorylation via phosphatase inhibition (Rhee, Science, 2007), suggesting that phosphorylation of these molecules could be dependent on the high levels of H2O2 produced by Ras CD34+ cells. In support of this, we found that the phosphorylation of PKC in Ras (but not control) cells increased in a density-dependent manner. Treatment with catalase reduced pPKC levels in mutant Ras expressing cells in a dose-dependent manner, supporting a role for H2O2 in promoting protein phosphorylation. In summary, these data show for the first time that Ras strongly promotes ROS production via NOX family proteins in normal human progenitor cells and that ROS are likely to play a key role in promoting cell survival and phosphorylation of intracellular proteins.


Sign in / Sign up

Export Citation Format

Share Document