lc3 puncta
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 30)

H-INDEX

11
(FIVE YEARS 4)

Author(s):  
Yuhan Shu ◽  
Xin Sun ◽  
Guiqin Ye ◽  
Mengting Xu ◽  
Zhipan Wu ◽  
...  

DHOK (14,15β-dihydroxyklaineanone) is a novel diterpene isolated from roots of Eurycoma longifolia Jack, a traditional herb widely applied in Southeast Asia. It is reported that DHOK has cytotoxic effect on cancer cells, but its anti-cancer mechanism has still been not clear. In our study, we first observed that DHOK inhibits cell proliferation of colorectal cancer cells in a time- and dose-dependent manner. Next, we performed transcriptome sequencing to identify the targets of DHOK and found that autophagy-related signaling pathways are involved under DHOK treatment. Indeed, in DHOK-treated cells, the level of autophagosome marker LC3 and the formation of GFP-LC3 puncta were decreased, indicating the reduction of autophagy. Moreover, confocal microscopy results revealed the lysosomal activity and the formation of autolysosomes are also inhibited. Our western blotting results demonstrated the activation of mammalian target of rapamycin (mTOR) signaling pathway by DHOK, which may be attributed to the enhancement of ERK and AKT activity. Functionally, activation of autophagy attenuated DHOK-caused cell death, indicating that autophagy serves as cell survival. In xenograft mouse model, our results also showed that DHOK activates the mTOR signaling pathway, decreases autophagy level and inhibits the tumorigenesis of colon cancer. Taken together, we revealed the molecular mechanism of DHOK against cancer and our results also demonstrate great potential of DHOK in the treatment of colorectal cancer.


Biology Open ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Jennifer Y. Liu ◽  
Yu-Hsiu Tony Lin ◽  
Andrew M. Leidal ◽  
Hector H. Huang ◽  
Jordan Ye ◽  
...  

ABSTRACT There is great interest in understanding the cellular mechanisms controlling autophagy, a tightly regulated catabolic and stress-response pathway. Prior work has uncovered links between autophagy and the Golgi reassembly stacking protein of 55 kDa (GRASP55), but their precise interrelationship remains unclear. Intriguingly, both autophagy and GRASP55 have been functionally and spatially linked to the endoplasmic reticulum (ER)­­-Golgi interface, broaching this compartment as a site where GRASP55 and autophagy may intersect. Here, we uncover that loss of GRASP55 enhances LC3 puncta formation, indicating that GRASP55 restricts autophagosome formation. Additionally, using proximity-dependent biotinylation, we identify a GRASP55 proximal interactome highly associated with the ER-Golgi interface. Both nutrient starvation and loss of GRASP55 are associated with coalescence of early secretory pathway markers. In light of these findings, we propose that GRASP55 regulates spatial organization of the ER-Golgi interface, which suppresses early autophagosome formation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Z Leung ◽  
M Calder ◽  
D Betts ◽  
B Ab. Rafea ◽  
A Watson

Abstract Study question The aim of the study is to identify the autophagic profile and the effects of fatty acid treatments on autophagic activity in preimplantation mouse embryos. Summary answer Autophagic activity varies significantly in early stages of mouse preimplantation development; exposure to fatty acids alters the embryonic autophagy profile. What is known already Obesity is one of the top comorbidities for infertility, and obese individuals have elevated fatty acid levels. In serum, palmitic acid (PA) and oleic acid (OA) are the most abundant saturated and unsaturated fatty acids, respectively. We recently reported that PA impairs blastocyst development, affects mitochondrial reactive oxygen species, triacylglycerol levels, and endoplasmic reticulum stress pathways during mouse preimplantation development. Interestingly, the addition of OA counteracts those effects. Autophagy plays an essential role in embryo development, as knock-out of a key autophagy protein is embryonic lethal. Little is known about the autophagic profile in fatty acid treated mouse preimplantation embryos. Study design, size, duration Pools of 20 – 25 mouse embryos were collected from gonadotrophin super-ovulated and mated CD1 female mice. Two-cell stage embryos were treated with 100 µM PA and 250 µM OA, alone and in combination, and 1.5% bovine serum albumin media (control) within KSOMaa media for 18, 24, and 48 hours in vitro. The detection of various autophagic markers were evaluated by immunofluorescence microscopy and RT-qPCR. Participants/materials, setting, methods mRNA levels of autophagic markers were measured using RT-qPCR with the Taqman primers and Universal PCR Mix. Immunofluorescence staining of LC3 puncta (marker for autophagosome formation) was performed using LC3A/B polyclonal antibody (Invitrogen PA1–16931) and DAPI (4′,6-Diamidino–2-phenylindole dihydrochloride) was used to stain for cell nuclei. Analysis of LC3 puncta was performed using ImageJ software. Images were acquired using an LSM 800 laser scanning confocal microscope. Data analysis was completed by GraphPad Prism software. Main results and the role of chance Mouse preimplantation embryos showed no change in mRNA levels of autophagic markers (Bcln1, ATG3, ATG5, and LC3) relative to the control group after 48-hours exposure of 100 µM PA and 250 µM OA treatments, alone and in combination. The number of LC3 puncta was measured and analyzed as a reflection of autophagic activity in mouse preimplantation embryos. Under the fatty acid-free condition, the average number of LC3 puncta per blastomere was significantly decreased after 18 hours of development (p < 0.005). However, the average number of LC3 puncta per blastomere at 18, 24, and 48 hours were not significantly different from each other (p = 0.2724). Following 100 µM PA and 250 µM OA treatments, alone and in combination, autophagic activity was impacted by the presence of fatty acids. Mouse preimplantation embryos exposed to control and fatty acid treatment groups demonstrated no significant differences in LC3 puncta per blastomere at 18- and 24-hours treatment time (p = 0.5381; p = 0.7829). However, embryos exposed to 48 hours of PA treatment had a significantly greater number of LC3 puncta per blastomere than embryos exposed to 48 hours of OA and PA and OA combination treatments (p < 0.05). Limitations, reasons for caution Although LC3 puncta count (autophagosome formation) is impacted by fatty acid treatment, autophagic flux must be measured to fully investigate autophagic activity during mouse preimplantation development. These processes need to be measured in human embryos cultured in vitro. Wider implications of the findings: Profiling autophagic activity in fatty acid treated mouse preimplantation embryos would guide future investigations on pharmacological modulation of autophagy as a therapeutic intervention for developmentally delayed embryos. With the information gained, we aim to develop strategies to assist overweight and obese patients with their fertility needs. Trial registration number Not applicable


Author(s):  
Xianyou Zeng ◽  
Changyan Zhu ◽  
Xianxin Zhu

Abstract DUSP4 is considered as an oncogenic gene. However, the effect of DUSP4 on the carcinogenesis of Clear cell Renal cell carcinoma (CCRCC) is still unclear. In this study, DUSP4 mRNA levels were significantly increased in CCRCC tissues and cell lines. Furthermore, DUSP4 overexpression promotes the proliferation, migration and tumorigenicity of CCRCC cells while DUSP4 silencing showed the opposite effects. Importantly, both of autophagic activity (LC3 conversion rate and LC3 puncta formation) and total death level promoted by DUSP4 silencing were reversed by treatment with 3-MA in CCRCC cells. Moreover, the proliferation and migration of CCRCC cells inhibited by DUSP4 silencing were also recovered by suppression of autophagy with 3-MA. In conclusion, DUSP4 serves as an oncogenic gene in CCRCC carcinogenesis due to its inhibitory effect on autophagic death, indicating the potential value of DUSP4 in the diagnosis and treatment of CCRCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Young-Sun Lee ◽  
Deepak Prasad Gupta ◽  
Sung Hee Park ◽  
Hyun-Jeong Yang ◽  
Gyun Jee Song

Dimethyl fumarate (DMF), which has been approved by the Food and Drug Administration for the treatment of relapsing-remitting multiple sclerosis, is considered to exert anti-inflammatory and antioxidant effects. Microglia maintain homeostasis in the central nervous system and play a key role in neuroinflammation, while autophagy controls numerous fundamental biological processes, including pathogen removal, cytokine production, and clearance of toxic aggregates. However, the role of DMF in autophagy induction and the relationship of this effect with its anti-inflammatory functions in microglia are not well known. In the present study, we investigated whether DMF inhibited neuroinflammation and induced autophagy in microglia. First, we confirmed the anti-neuroinflammatory effect of DMF in mice with streptozotocin-induced diabetic neuropathy. Next, we used in vitro models including microglial cell lines and primary microglial cells to examine the anti-inflammatory and neuroprotective effects of DMF. We found that DMF significantly inhibited nitric oxide and proinflammatory cytokine production in lipopolysaccharide-stimulated microglia and induced the switch of microglia to the M2 state. In addition, DMF treatment increased the expression levels of autophagy markers including microtubule-associated protein light chain 3 (LC3) and autophagy-related protein 7 (ATG7) and the formation of LC3 puncta in microglia. The anti-inflammatory effect of DMF in microglia was significantly reduced by pretreatment with autophagy inhibitors. These data suggest that DMF leads to the induction of autophagy in microglia and that its anti-inflammatory effects are partially mediated through an autophagy-dependent pathway.


2021 ◽  
Author(s):  
Leilei Zang ◽  
Yanmei Song ◽  
Yanhua Tian ◽  
Ning Hu

Abstract Background: DUSP4 is a pro-tumorigenic molecule of papillary thyroid carcinoma (PTC). DUSP4 also exists as an autophagic regulator. Moreover, DUSP4, as a negative regulator of MAPK, can prevent Beclin1 from participating in autophagic response. This study aimed to explore whether TAT-Beclin1, a recombinant protein of Beclin1, could inhibit the tumorigenesis of DUSP4-positive PTC by regulating autophagy.Methods: First, we divided PTC cancer tissues into three groups according to DUSP4 expression levels by immunohistochemical analyses, and evaluated the relationship between the expression of autophagic proteins (Beclin1 and LC3II) and DUSP4 expression using Western blotting assays. After overexpression of DUSP4 by lentiviral transduction, the roles of TAT-Beclin1 on DUSP4-overexpressed PTC was detected.Results: Our results showed that the expression levels of autophagic proteins (Beclin1 and LC3II) increased with the increase of DUSP4 expression in PTC carcinomas. In PTC cells, DUSP4 overexpression-inhibited autophagic activity (including Beclin1 expression, LC3 conversion rate and LC3-puncta formation) and -promoted cell proliferation and migration were reversed by TAT-Beclin1 administration. In vivo assays also showed that DUSP4-overexpressed PTC cells had stronger tumorigenic ability and weaker autophagic activity, which was recovered by TAT-Beclin1 administration. Conclusions: TAT-Beclin1, as an autophagic promoter, could repress the carcinogenesis of DUSP4-positive PTC, which implies that the addition of TAT-Beclin1 may be determined through detecting the levels of DUSP4 in the treatment of PTC.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 777
Author(s):  
Mingjun Shi ◽  
Sierra Shepard ◽  
Zhiyong Zhou ◽  
Jenny Maique ◽  
Olivia Seli ◽  
...  

High phosphate contributes to uremic cardiomyopathy. Abnormal autophagy is associated with the development and progression of heart disease. What is unknown is the effects of phosphate on autophagy and whether the ill effects of phosphate on cardiomyocytes are mediated by low autophagy. High (2.0% w/w)-phosphate diet reduced LC3 puncta in cardiomyocytes and ratio of LC3 II/I and increased p62 protein, indicating that autophagy activity was suppressed. Mice with cardiomyocyte-specific deletion of autophagy-related protein 5 (H-atg5−/−) had reduced autophagy only in the heart, developed cardiac dysfunction with hypertrophy and fibrosis, and had a short lifespan. When H-atg5−/− mice were fed a high-phosphate diet, they developed more apoptosis in cardiomyocytes, more severe cardiac remodeling, and shorter lifespan than normal phosphate-fed H-atg5−/− mice, indicating that cardiac phosphotoxicity is imparted independently of atg5. In conclusion, although high phosphate suppresses autophagy, high phosphate and low autophagy independently trigger and additionally amplify cardiac remodeling and dysfunction.


Author(s):  
Min Zhao ◽  
Yu Zhang ◽  
Yang Jiang ◽  
Kai Wang ◽  
Xiang Wang ◽  
...  

Abstract Background Due to the hypoxia and nutrient deficiency microenvironment, glioblastoma (GBM) exhibits high autophagy activity and autophagy plays an important role in the progression of GBM. However, the molecular mechanism of autophagy in GBM progression remains unclear. The aim of this study is to delve out the role and mechanism of yes-associated protein (YAP) in GBM autophagy and progression. Methods The level of autophagy or autophagy flux were assessed by using western blotting, GFP-LC3 puncta (Live) imaging, transmission electron microscopy and GFP-RFP-LC3 assay. The GBM progression was detected by using CCK8, EdU, nude mouse xenograft and Ki67 staining. Isobaric tags for relative and absolute quantification (iTraq) quantitative proteomics was used to find out the mediator of YAP in autophagy. Expression levels of YAP and HMGB1 in tissue samples from GBM patients were examined by Western blotting, tissue microarray and immunohistochemistry. Results YAP over-expression enhanced glioma cell autophagy under basal and induced conditions. In addition, blocking autophagy by chloroquine abolished the promoting effect of YAP on glioma growth. Mechanistically, YAP over-expression promoted the transcription and translocation of high mobility group box 1(HMGB1), a well-known regulator of autophagy, from nucleus to cytoplasm. Down-regulation of HMGB1 abolished the promoting effect of YAP on autophagy and glioma growth. Furthermore, the expression of YAP and HMGB1 were positively associated with each other and suggested poor prognosis for clinical GBM. Conclusion YAP promoted glioma progression by enhancing HMGB1-mediated autophagy, indicating that YAP-HMGB1 axis was a feasible therapeutic target for GBM. Our study revealed a clinical opportunity involving the combination of chemo-radiotherapy with pharmacological autophagy inhibition for treating GBM patients with YAP high expression.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 408
Author(s):  
Md. Ataur Rahman ◽  
Yoonjeong Cho ◽  
Ghilsoo Nam ◽  
Hyewhon Rhim

Oxyresveratrol (OxyR), a well-known polyphenolic phytoalexin, possesses a wide range of pharmacological and biological properties, comprising antioxidant, anti-inflammatory, free radical scavenging, anti-cancer, and neuroprotective activities. Autophagy is a cellular self-degradation system that removes aggregated or misfolded intracellular components via the autophagosome-lysosomal pathway. Astrocyte accumulation is one of the earliest neuropathological changes in Alzheimer’s disease (AD), and amyloid precursor protein (APP) is the hallmark of AD. OxyR could affect APP modulation via the autophagy pathway. Here, we have reported that OxyR promotes autophagy signaling and attenuates APP production in primary cortical astrocytes based on immunofluorescence and immunoblotting assay results. Co-treatment with the late-stage autophagy inhibitor chloroquine (CQ) and OxyR caused significantly higher microtubule-associated protein light chain 3 (LC3)-II protein levels and LC3 puncta counts, demonstrating that OxyR stimulated autophagic flux. We also found that OxyR significantly reduced the levels of the autophagy substrate p62/SQSTM1, and p62 levels were significantly augmented by co-treatment with OxyR and CQ, because of the impaired deficiency of p62 in autolysosome. Likewise, pretreatment with the autophagy inhibitor, 3-methyladenine (3-MA), resulted in significantly fewer OxyR-induced LC3 puncta and lower LC3-II expression, suggesting that OxyR-mediated autophagy was dependent on the class III PI3-kinase pathway. In contrast, OxyR caused significantly lower LC3-II protein expression when pretreated with compound C, an AMP-activated protein kinase (AMPK) inhibitor, indicating that AMPK signaling regulated the OxyR-induced autophagic pathway. Additionally, co-treatment with OxyR with rapamycin intended to inhibit the mammalian target of rapamycin (mTOR) caused significantly lower levels of phospho-S6 ribosomal protein (pS6) and higher LC3-II expression, implying that OxyR-mediated autophagy was dependent on the mTOR pathway. Conversely, OxyR treatment significantly upregulated unc-51-like autophagy activating kinase 1 (ULK1) expression, and ULK1 small interfering RNAs (siRNA) caused significantly lower OxyR-induced LC3 puncta counts and LC3-II expression, indicating that ULK1 was essential for initiating OxyR-induced autophagy. However, we found that OxyR treatment astrocytes significantly increased the expression of lysosome-associated membrane protein 1 (LAMP1). Finally, we established a stress-induced APP production model using corticosterone (CORT) in cortical astrocytes, which produced significantly more APP than the equivalent using dexamethasone (DEX). In our experiment we found that CORT-induced APP production was significantly attenuated by OxyR through the autophagy pathway. Therefore, our study reveals that OxyR regulates AMPK/ULK1/mTOR-dependent autophagy induction and APP reduction in mouse cortical astrocytes.


2021 ◽  
Author(s):  
Ping-Yue Pan ◽  
Justin Zhu ◽  
Asma Rizvi ◽  
Xinyu Zhu ◽  
Hikari Tanaka ◽  
...  

Macroautophagy (hereafter, autophagy) dysregulation is implicated in multiple neurological disorders. While the autophagy pathways are heavily investigated in heterologous cells and neurons, how autophagy is regulated in the astrocyte, the most abundant cell type in the mammalian brain, is less understood. Here we report that Synaptojanin1 (Synj1), a neuron enriched lipid phosphatase, is expressed in low levels in astrocytes and represses autophagy at the basal level. Synj1 is encoded by the Synj1 gene, whose missense mutations are linked to Parkinsonism with seizure. While the best-known role of Synj1 is to facilitate synaptic vesicle recycling, recent studies suggest that Synj1 also regulates autophagy. Our previous study using the Synj1 haploinsufficient (Synj1+/-) mouse demonstrated that Synj1 deficiency was associated with an age-dependent autophagy impairment in multiple brain regions. We now use cultured astrocytes from Synj1 deficient mice to investigate its role in astrocyte autophagy. We demonstrate that Synj1 deficient astrocytes exhibit increased LC3 puncta, which is more pronounced when lysosomal acidification is blocked. The increased autophagosome formation is accompanied by reduced autophagy substrate, p62, but an insensitivity to starvation induced autophagy clearance. Moreover, we show, for the first time, that the Parkinsonism associated R839C mutation impacts astrocyte autophagy. The profound impact of this mutation on Synj1s phosphatase functions results in elevated basal level autophagosome formation and clearance that mimics Synj1 deletion. We find that energy sensing molecules, including mTOR and AMPK, are altered in Synj1 deficient astrocytes, which may contribute to the enhanced basal level autophagy.


Sign in / Sign up

Export Citation Format

Share Document