Iron overload induced by ferric ammonium citrate triggers reactive oxygen species-mediated apoptosis via both extrinsic and intrinsic pathways in human hepatic cells

2015 ◽  
Vol 35 (6) ◽  
pp. 598-607 ◽  
Author(s):  
S-W Li ◽  
C-M Liu ◽  
J Guo ◽  
AM Marcondes ◽  
J Deeg ◽  
...  

Background: Hepatic iron overload is common in patients with myelodysplastic syndromes undergoing hematopoietic cell transplantation (HCT) and may predispose to peri- and post-HCT toxicity. To better understand the mechanisms of iron overload-induced liver injury, we examined the effects of iron overload induced by ferric ammonium citrate (FAC) on oxidative stress and apoptosis signaling pathway in human hepatic cell line HH4. Methods and Results: Hepatic HH4 cells were exposed to FAC to force iron uptake, and cellular responses were determined. Incubation with 5 mM FAC resulted in increased intracellular iron content in a time-dependent manner. High concentration of FAC impaired cell viability and increased level of reactive oxygen species (ROS), and addition of antioxidant reagent such as glutathione or N-acetylcysteine dramatically reduced FAC-induced intracellular ROS generation. FAC overload significantly increased the phosphorylation of inhibitor of κB-α, p38 mitogen-activated protein kinase (MAPK), and nuclear factor κ light chain enhancer of activated B cells (NF-κB) p65 and promoted the nuclear translocation of NF-κB p65. Knockdown of Fas and Bid expression by small interfering RNA in iron-treated HH4 cells resulted in restoration of cell viability. Conclusions: We reported that FAC treatment is capable of inducing both extrinsic death receptor and intrinsic mitochondrial signaling pathway-mediated HH4 cells apoptosis through ROS-activated p38 MAPK and NF-κB pathways.

Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 139 ◽  
Author(s):  
Yoon-Hee Choi ◽  
Ok-Hwan Lee ◽  
Yulong Zheng ◽  
Il-Jun Kang

Obesity is one of the major public health problems in the world because it is implicated in metabolic syndromes, such as type 2 diabetes, hypertension, and cardiovascular diseases. The objective of this study was to investigate whether Erigeron annuus (L.) Pers. (EAP) extract suppresses reactive oxygen species (ROS) production and fat accumulation in 3T3-L1 cells by activating an AMP-dependent kinase (AMPK) signaling pathway. Our results showed that EAP water extract significantly inhibits ROS production, adipogenesis, and lipogenesis during differentiation of 3T3-L1 preadipocytes. In addition, EAP decreased mRNA and protein levels of proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα). Moreover, EAP suppressed mRNA expressions of fatty acid synthase (FAS), lipoprotein lipase (LPL), adipocyte protein 2 (aP2) in a dose-dependent manner. Whereas, EAP upregulated adiponectin expression, phosphorylation levels of AMPK and carnitine palmitoyltransferase 1 (CPT-1) protein level during differentiation of 3T3-L1 preadipocytes. These results suggest that EAP water extract can exert ROS-linked anti-obesity effect through the mechanism that might involve inhibition of ROS production, adipogenesis and lipogenesis via an activating AMPK signaling pathway.


2004 ◽  
Vol 287 (4) ◽  
pp. H1495-H1500 ◽  
Author(s):  
Liming Jin ◽  
Zhekang Ying ◽  
R. Clinton Webb

Evidence indicates that both the Rho/Rho kinase signaling pathway and reactive oxygen species (ROS) such as superoxide and H2O2 are involved in the pathogenesis of hypertension. This study aimed to determine whether ROS-induced vascular contraction is mediated through activation of Rho/Rho kinase. Rat aortic rings (endothelium denuded) were isolated and placed in organ chambers for measurement of isometric force development. ROS were generated by a xanthine (X)-xanthine oxidase (XO) mixture. The antioxidants tempol (3 mM) and catalase (1,200 U/ml) or the XO inhibitor allopurinol (400 μM) significantly reduced X/XO-induced contraction. A Rho kinase inhibitor, (+)-( R)- trans-4-(1-aminoethyl- N-4-pyridil)cyclohexanecarboxamide dihydrochloride (Y-27632), decreased the contraction in a concentration-dependent manner; however, the Ca2+-independent protein kinase C inhibitor rottlerin did not have an effect on X/XO-induced contraction. Phosphorylation of the myosin light chain phosphatase target subunit (MYPT1) was increased by ROS, and preincubation with Y-27632 blocked this increased phosphorylation. Western blotting for cytosolic and membrane-bound fractions of Rho showed that Rho was increased in the membrane fraction by ROS, suggesting activation of Rho. These observations demonstrate that ROS-induced Ca2+ sensitization is through activation of Rho and a subsequent increase in Rho kinase activity but not Ca2+-independent PKC.


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095366
Author(s):  
Yun-Hee Rhee ◽  
Ye Kyu Park ◽  
Jong-Soo Kim

The aim of this study was to investigate the anti-inflammatory properties of Pandanus conoideus Lamk (red fruit oil [RFO]) and establish the signal pathway of the leading compounds. RAW 264.7 murine macrophage cells were used with lipopolysaccharide (LPS). Cell viability and the pro-inflammatory factors were investigated using MTT assay, real-time polymerase chain reaction (PCR), western blot analysis, and enzyme-linked immunosorbent assay. The quantification of leading compounds in RFO was performed using high-performance liquid chromatography (HPLC). RFO did not reduce RAW 264.7 cell viability. RFO significantly reduced the production of nitric oxide (NO), cyclooxygenase-2, and prostaglandin E2, and both the protein level and mRNA level of inducible NO synthase in LPS-induced macrophages. RFO also regulated the reactive oxygen species (ROS) in LPS-induced macrophages. RFO attenuated the translocation of the nuclear factor κB (NF-κB) p65 subunit, phosphorylation of I-κB, p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. HPLC analysis determined that 1 g of RFO had 14.05 ± 0.8 mg of β-cryptoxanthin and 7.4 ± 0.7 mg of β-carotene. In conclusion, RFO provides an anti-inflammatory effect by regulating ROS and NF-κB through mitogen-activated protein kinase due to antioxidant activity.


2017 ◽  
Vol 42 (2) ◽  
pp. 685-696 ◽  
Author(s):  
Xiaoxv Dong ◽  
Jing Fu ◽  
Xingbin Yin ◽  
Changhai Qu ◽  
Chunjing Yang ◽  
...  

Background/Aims: Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone), an anthraquinone active compounds, is isolated from some traditional medicinal plants such as Rheum palmatum L. and Cassia occidentalis, which induce hepatotoxicity in rats. The aim of this study was to determine potential cytotoxic effects of aloe-emodin on HepaRG cells and to define the underlying mechanism. Methods: MTT was used to evaluate cell viability. Apoptotic cell death was analyzed via Annexin V-FITC/PI double staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were determined by flow cytometry, while the expression of apoptosis-related proteins was determined by Western blot analysis. Results: Treatment with aloe-emodin significantly reduced cell viability and induced apoptosis in HepaRG cells in a dose- and time-dependent manner. It provoked ROS generation and depolarization of MMP in HepaRG cells when compared with controls. Aloe-emodin dose-dependently increased release of mitochondrial cytochrome c, and levels of Fas, p53, p21, Bax/Bcl-2 ratio, as well as activation of caspase-3, caspase-8, caspase-9, and subsequent cleavage of poly(ADP-ribose)polymerase (PARP). It also induced S-phase cell cycle arrest by increasing the expression of p21 and cyclin E proteins while significantly decreasing the expression of cyclin A and CDK2. Conclusion: These results suggest that aloe-emodin inhibits cell proliferation and induces apoptosis in HepaRG cells, most probably through a mechanism involving both Fas death pathway and the mitochondrial pathway by generation of ROS. These findings underscore the need for risk assessment of human exposure to aloe-emodin.


2021 ◽  
Author(s):  
Hongdong Ma ◽  
Zhiqing Li ◽  
Jiao Chu ◽  
Dali Yin

Abstract Objective To investigate the effect of melatonin on the apoptosis of hFOB1.19 cells induced by excess iron. Methods The hFOB1.19 cells were treated with ferric ammonium citrate (300 μmol/L) and melatonin (100 μmol/L) for 24 h. The apoptosis rate and the level of reactive oxygen species (ROS) were analyzed using flow cytometry. Expression of proteins associated with apoptosis, such as Bax and caspase-3, and those associated with the Nrf-2 signaling pathway such as Nrf2 and HO-1 were analyzed using western blotting. Results The level of ROS and the apoptosis rate increased after intervention with excess iron. The levels of Bax in the mitochondria and cleaved caspase-3 in the cytosol increased. However, after pretreatment with melatonin, the level of ROS, apoptosis rate, and expression of apoptosis-associated proteins decreased, and the expression of Nrf2 and HO-1 increased. Conclusion Melatonin inhibits the level of oxidation in osteoblasts via the Nrf2/HO-1 signal pathway, resulting in the reduction of apoptosis induced by excess iron.


2020 ◽  
Vol 21 (24) ◽  
pp. 9409
Author(s):  
Na-Ri Lee ◽  
Ruo Yu Meng ◽  
So-Young Rah ◽  
Hua Jin ◽  
Navin Ray ◽  
...  

Ursolic acid (UA) possesses various pharmacological activities, such as antitumorigenic and anti-inflammatory effects. In the present study, we investigated the mechanisms underlying the effects of UA against esophageal squamous cell carcinoma (ESCC) (TE-8 cells and TE-12 cells). The cell viability assay showed that UA decreased the viability of ESCC in a dose-dependent manner. In the soft agar colony formation assay, the colony numbers and size were reduced in a dose-dependent manner after UA treatment. UA caused the accumulation of vacuoles and LC3 puncta, a marker of autophagosome, in a dose-dependent manner. Autophagy induction was confirmed by measuring the expression levels of LC3 and p62 protein in ESCC cells. UA increased LC3-II protein levels and decreased p62 levels in ESCC cells. When autophagy was hampered using 3-methyladenine (3-MA), the effect of UA on cell viability was reversed. UA also significantly inhibited protein kinase B (Akt) activation and increased p-Akt expression in a dose-dependent manner in ESCC cells. Accumulated LC3 puncta by UA was reversed after wortmannin treatment. LC3-II protein levels were also decreased after treatment with Akt inhibitor and wortmannin. Moreover, UA treatment increased cellular reactive oxygen species (ROS) levels in ESCC in a time- and dose-dependent manner. Diphenyleneiodonium (an ROS production inhibitor) blocked the ROS and UA induced accumulation of LC3-II levels in ESCC cells, suggesting that UA-induced cell death and autophagy are mediated by ROS. Therefore, our data indicate that UA inhibits the growth of ESCC cells by inducing ROS-dependent autophagy.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1831
Author(s):  
Ming-Feng Tsai ◽  
Shih-Ming Chen ◽  
Ann-Zhi Ong ◽  
Yi-Hsuan Chung ◽  
Pei-Ni Chen ◽  
...  

Shikonin mitigated tumor cell proliferation by elevating reactive oxygen species (ROS) levels. Herein, we investigated the effects of shikonin on renal cancer cell (RCC) cell proliferation. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that shikonin dose-dependently reduced the proliferation of Caki-1 and ACHN cells. Shikonin remarkably triggered necrosis and apoptosis in Caki-1 and ACHN cells in proportion to its concentration. Moreover, necrostatin-1 recovered cell viability in the presence of shikonin. Elevated ROS levels and mitochondrial dysfunction were also found in shikonin treatment groups. Pretreatment with N-acetyl cysteine remarkably mitigated shikonin-induced cell death and ROS generation. Western blot analysis revealed that shikonin reduced pro-PARP, pro-caspase-3, and Bcl-2 expression and increased cleavage PARP expression. Enhanced autophagy was also found in the shikonin-treated group as evidenced by acridine orange staining. Moreover, light chain 3B (LC3B)-II accumulation and enhanced p62 expression indicated that autophagy occurred in the shikonin-treated group. LC3B knockdown considerably recovered cell viability in the presence of shikonin. Shikonin treatment elevated p38 activity in a dose-dependent manner. In conclusion, our results revealed that shikonin triggered programmed cell death via the elevation of ROS level and p38 activity in different types of RCC cells. These findings suggested that shikonin may be a potential anti-RCC agent.


2020 ◽  
Author(s):  
Ke-jie Wang ◽  
Xiang-yu Meng ◽  
Jun-feng Chen ◽  
Kai-yun Wang ◽  
Cheng Zhou ◽  
...  

Abstract Background: Renal cell carcinoma (RCC) is a tumor with unpredictable presentation and poor clinical outcome. RCC is always resistant to chemotherapy, radiation, and weakly sensitive to immunotherapeutic agents. Therefore, novel agents and approaches are urgently needed for the treatment of RCC. Emodin, an anthraquinone compound extracted from rhubarb and other traditional Chinese herbs, has been implicated in a wide variety of pharmacological effects, such as anti-inflammatory, antiviral, and antitumor activities. However,its role in RCC remains unkown. Methods: Flow cytometry assay and lactate dehydrogenase release assay were used to detect the cell death. Reactive oxygen species was tested by the dye MitoSox and DCFH-DA. Glucose-6-phosphate, pyruvate and ATP level were measured to evaluate the glycolysis process. Western blot was used to detect protein expression. Results: Emodin effectively killed renal cancer cells without significant toxicity to normal renal tubular epithelial cell. Flow cytometry assay with Annexin V-FITC and PI demonstrated that emodin induces necroptosis, but not apoptosis, in renal cancer cells. Meanwhile, the phosphorylation levels of RIP1 and MLKL, the key necroptosis-related proteins, were significantly increased. To explore how emodin inhibits kidney tumor growth, reactive oxygen species (ROS) levels were tested and the levels of ROS increased upon emodin treatment in a dose-dependent manner. Further studies demonstrated that emodin induced necroptosis through ROS-mediated activation of JNK signaling pathway, and also inhibited glycolysis by down-regulation GLUT1 by ROS-mediated inactivation of PI3K/AKT signaling pathway. Conclusion: These findings revealed the potential mechanisms by which emodin suppresses renal cancer cell growth, and will help develop novel therapeutic approaches for patients with JNK- or PI3K/AKT-dysregulated renal cancer.


2017 ◽  
Vol 63 (2) ◽  
pp. 153-159 ◽  
Author(s):  
Xinghua Wang ◽  
Min Yi ◽  
Hui Liu ◽  
Yansha Han ◽  
Huilan Yi

Cadmium (Cd) is one of the most toxic heavy metals. It is of great environmental concern and its toxicity has been investigated in a variety of cells. In this study, we elucidated the toxic effects of Cd in cells of yeast (Saccharomyces cerevisiae). Our results showed that Cd2+ (0.05–5.0 mmol·L−1) significantly inhibited yeast cell growth, and the inhibitory effect was positively correlated with Cd2+ concentrations. Cd2+ caused loss of yeast cell viability in a concentration- and duration-dependent manner. Intracellular reactive oxygen species (ROS) and Ca2+ levels increased in yeast cells after exposure to 5.0 mmol·L−1 Cd for 6 h. Cd2+-caused cell viability loss was blocked by antioxidants (0.5 mmol·L−1 ascorbic acid or 500 U·mL−1 catalase) or Ca2+ antagonists (0.5 mmol·L−1 ethylene glycol tetraacetic acid or 0.5 mmol·L−1 LaCl3). Moreover, a collapse of mitochondrial membrane potential (ΔΨm) was observed in Cd2+-treated yeast cells. These results indicate that Cd-induced yeast cell killing was associated with the elevation of intracellular ROS and Ca2+ levels and also the loss of ΔΨm.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii17-ii17
Author(s):  
Shashank Hambarde ◽  
Martyn Sharpe ◽  
David Baskin ◽  
Santosh Helekar

Abstract Noninvasive cancer therapy with minimal side effects would be ideal for improving patient outcome in the clinic. We have developed a novel therapy using strong rotating magnets mounted on a helmet. They generate oscillating magnetic fields (OMF) that penetrate through the skull and cover the entire brain. We have demonstrated that OMF can effectively kill patient derived glioblastoma (GBM) cells in cell culture without having cytotoxic effects on cortical neurons and normal human astrocytes (NHA). Exposure of GBM cells to OMF reduced the cell viability by 33% in comparison to sham-treated cells (p< 0.001), while not affecting NHA cell viability. Time lapse video-microscopy for 16 h after OMF exposure showed a marked elevation of mitochondrial reactive oxygen species (ROS), and rapid apoptosis of GBM cells due to activation of caspase 3. Addition of a potent antioxidant vitamin E analog Trolox effectively blocked OMF-induced GBM cell death. Furthermore, OMF significantly potentiated the cytotoxic effect of the pro-oxidant Benzylamine. The results of our studies demonstrate that OMF-induced cell death is mediated by ROS generation. These results demonstrate a potent oncolytic effect on GBM cells that is novel and unrelated to any previously described therapy, including a very different mechanism of action and different technology compared to Optune therapy. The effect is very powerful, and unlike Optune, can be seen within hours after initiation of treatment. We believe that this technology holds great promise for new, effective and nontoxic treatment of glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document