Ultra-High Frequency Ultrasound, A Promising Diagnostic Technique: Review of the Literature and Single-Center Experience

2020 ◽  
pp. 084653712094068
Author(s):  
Rossana Izzetti ◽  
Saverio Vitali ◽  
Giacomo Aringhieri ◽  
Marco Nisi ◽  
Teresa Oranges ◽  
...  

Objectives: Ultra-high frequency ultrasonography (UHFUS) is a recently introduced diagnostic technique which finds several applications in diverse clinical fields. The range of frequencies between 30 and 100 MHz allows for high spatial resolution imaging of superficial structures, making this technique suitable for the imaging of skin, blood vessels, musculoskeletal anatomy, oral mucosa, and small parts. However, the current clinical applications of UHFUS have never been analyzed in a consistent multidisciplinary manner. The aim of this study is to revise and discuss the current applications of UHFUS in different aspects of research and clinical practice, as well as to provide some examples of the current work-in-progress carried out in our center. Materials and Methods: A literature search was performed in order to retrieve articles reporting the applications of UHFUS both in research and in clinical settings. Inclusion criteria were the use of frequencies above 30 MHz and study design conducted in vivo on human subjects. Results: In total 66 articles were retrieved. The majority of the articles focused on dermatological and vascular applications, although musculoskeletal and intraoral applications are emerging fields of use. We also describe our experience in the use of UHFUS as a valuable diagnostic support in the fields of dermatology, rheumatology, oral medicine, and musculoskeletal anatomy. Conclusion: Ultra-high frequency ultrasonography application involves an increasing number of medical fields. The high spatial resolution and the superb image quality achievable allow to foresee a wider use of this novel technique, which has the potential to bring innovation in diagnostic imaging.

Author(s):  
A. W. Kastelein ◽  
B. C. de Graaf ◽  
Y. P. Latul ◽  
K. W. J. Verhorstert ◽  
J. Holthof ◽  
...  

2020 ◽  
Vol 19 (4) ◽  
pp. 334-340
Author(s):  
Rossana Izzetti ◽  
Teresa Oranges ◽  
Agata Janowska ◽  
Mario Gabriele ◽  
Filippo Graziani ◽  
...  

The management of lower extremity wounds is frequently performed by means of clinical examination, representing a challenge for the clinician due to the various conditions that can potentially enter differential diagnosis. Several diagnostic techniques are available in the dermatologist’s arsenal as a support to diagnosis confirmation, including dermoscopy and ultrasonography. Recently, a novel ultrasonographic technique involving the use of ultra-high ultrasound frequencies has entered the scene, and appears a promising tool in the diagnostic workup of skin ulcerative lesions. The focus of this review is to discuss the potential role of ultra-high-frequency ultrasonography in the diagnostic workup of wounds in the light of the current applications of the technique.


2021 ◽  
Vol 8 ◽  
Author(s):  
Li Li ◽  
Jiaosheng Xu ◽  
Siwei Wang ◽  
Jun Yang

Background: Pilomatricoma (PM) is one of the most common benign tumours in children. However, the inaccuracy of preoperative diagnosis and evaluation is high. Non-invasive examinations, including dermoscopy and ultrasound are helpful for diagnosing and evaluating PM. To date, ultra-high-frequency ultrasonographic features of PM have been rarely studied.Objective: We aimed to investigate the ultra-high frequency ultrasonographic features of PM in a large paediatric cohort and to determine the associations of these features with the clinical features of different histological subtypes of PM.Methods: This was a retrospective study. Patients who had both preoperative ultra-high-frequency ultrasonographic evaluation and pathological diagnosis of PM were enrolled. A series of infantile haemangiomas and cutaneous cysts during the same period were included as controls. Histological findings, including the stage, calcifying type, and ultrasonographic features of each lesion, were described.Results: A total of 133 patients with PM were included, and 147 PM lesions were analysed. The male-to-female ratio was 1:1.58, and the median age of onset was 91 (range: 10–188) months. On ultra-high-frequency ultrasonography, PM presented as heterogeneous (144/147, 98.0%), well-demarcated (143/147, 97.3%), and hypoechoic (126/147, 85.7%) tumours located between the deep dermis and subcutaneous tissue (139/147, 94.6%). The most common features were internal echogenic foci (135/147, 91.8%), hypoechoic rim (133/147, 90.5%), and posterior acoustic shadowing (94/147, 63.9%). Fourteen (9.5%) lesions were histologically categorized in the early stage, 58 (39.5%) in the fully developed stage, 65 (44.2%) in the early regressive stage and 10 (6.8%) in the late regressive stage. Three calcifying types, including scattered dots, clumps and arcs, were observed on histologic examination, which corresponded well with grey-scale imaging on ultra-high-frequency ultrasonography. Each calcifying type was significantly different in various histological stages (P = 0.001), among which scattered dots were mainly present in the early and fully developed stage and arc-shaped calcifying were present in the regressive stages. Calcification was observed in skin cysts, while there was more frequent posterior enhancement, less frequent posterior shadowing, and hypoechoic rim than PM. Haemangioma also presented as a hypoechoic tumour on grey-scale imaging. However, haemangioma was homogeneous and rarely calcifying.Conclusions: PM is a heterogeneous, well-demarcated, hypoechoic tumour located between the deep dermis and the subcutis on ultra-high-frequency ultrasonography. The most common features are internal echogenic foci (calcifying) and hypoechoic rim. Calcifying types can help in the staging of PM. Ultra-high-frequency ultrasound is a useful tool for the diagnosis and evaluation of PM.


2020 ◽  
Vol 49 (7) ◽  
pp. 20190318 ◽  
Author(s):  
Rossana Izzetti ◽  
Saverio Vitali ◽  
Giacomo Aringhieri ◽  
Teresa Oranges ◽  
Valentina Dini ◽  
...  

Objectives: Ultra-high frequency ultrasound (UHFUS) is a recently developed diagnostic technique involving the use of ultrasound frequencies up to 70 MHz, allowing to obtain 30 µm resolution of targets located within 1 cm from the surface. Oral mucosa can be affected by diverse pathological conditions, which are currently investigated by means of clinical examination. In this scenario, intraoral UHFUS can provide additional information and support clinical assessment of oral mucosa. In this preliminary study, typical features of normal oral mucosa are described, in order to set a benchmark for the future identification of oral soft tissue alterations. Methods: Twenty healthy subjects (10 males and 10 females, mean age 30 years) were enrolled and underwent intraoral UHFUS examination. In all the subjects, tongue, buccal mucosa, gingiva, lip mucosa, and palate were scanned, and images acquired. Intraoral UHFUS scan included Brightness-mode and Doppler mode acquisitions performed with a standardized protocol. UHFUS images were postprocessed and analyzed using a dedicated software. UHFUS-based biomarkers (epithelial thickness, echogenicity, and vascularization) were employed for image description. Results: Normal oral anatomy of the different sites analyzed was described. For all the sites, UHFUS biomarkers were characterized, and information on typical aspect of oral mucosa was retrieved. Conclusions: In this explorative study, we suggest a potential role for intraoral UHFUS in the study of oral mucosa, giving insights into the possibility to improve the assessment, diagnosis, and management of the conditions involving oral mucosa. UHFUS seems a promising tool, which could potentially support clinical examination in daily oral medicine practice.


Author(s):  
Carolina Ávila de Almeida ◽  
Simone Guarçoni ◽  
Bruna Duque Estrada ◽  
Maria Carolina Zafra Páez ◽  
Clarissa Canella

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2275
Author(s):  
Hae Gyun Lim ◽  
Hyung Ham Kim ◽  
Changhan Yoon

High-frequency ultrasound (HFUS) imaging has emerged as an essential tool for pre-clinical studies and clinical applications such as ophthalmic and dermatologic imaging. HFUS imaging systems based on array transducers capable of dynamic receive focusing have considerably improved the image quality in terms of spatial resolution and signal-to-noise ratio (SNR) compared to those by the single-element transducer-based one. However, the array system still suffers from low spatial resolution and SNR in out-of-focus regions, resulting in a blurred image and a limited penetration depth. In this paper, we present synthetic aperture imaging with a virtual source (SA-VS) for an ophthalmic application using a high-frequency convex array transducer. The performances of the SA-VS were evaluated with phantom and ex vivo experiments in comparison with the conventional dynamic receive focusing method. Pre-beamformed radio-frequency (RF) data from phantoms and excised bovine eye were acquired using a custom-built 64-channel imaging system. In the phantom experiments, the SA-VS method showed improved lateral resolution (>10%) and sidelobe level (>4.4 dB) compared to those by the conventional method. The SNR was also improved, resulting in an increased penetration depth: 16 mm and 23 mm for the conventional and SA-VS methods, respectively. Ex vivo images with the SA-VS showed improved image quality at the entire depth and visualized structures that were obscured by noise in conventional imaging.


Radiology ◽  
2004 ◽  
Vol 233 (1) ◽  
pp. 292-296 ◽  
Author(s):  
Jelena Lazovic-Stojkovic ◽  
Timothy J. Mosher ◽  
Harvey E. Smith ◽  
Qing X. Yang ◽  
Bernard J. Dardzinski ◽  
...  

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Samuel Röhl ◽  
Linnea Eriksson ◽  
Robert Saxelin ◽  
Mariette Lengquist ◽  
Kenneth Caidahl ◽  
...  

Objective: Ultrasound BioMicroscopy (UBM), or high-frequency ultrasound, is a novel technique used for assessment of anatomy and physiology small research animals. In this study, we evaluate the UBM assessment of the re-endothelialization process following denudation of the carotid artery in rats. Methods: Ultrasound BioMicroscopy data from three different experiments were analyzed. A total of 66 rats of three different strains (Sprague-Dawley, Wistar and Goto-Kakizaki) were included in this study. All animals were subjected to common carotid artery balloon injury and examined with UBM 2 and 4 weeks after injury. Re-endothelialization in UBM was measured as the length from the carotid bifurcation to the distal edge of the intimal hyperplasia. En face staining with Evans-blue dye was performed upon euthanization at 4 weeks after injury followed by tissue harvest for morphological and immunohistochemical evaluation. Results: A significant correlation (Spearman r=0.63,p<0.0001) and an agreement according to Bland-Altman test was identified when comparing all measurements of re-endothelialization in high frequency ultrasound and en face staining. Analysis by animal strain revealed a similar pattern and a significant growth in re-endothelialization length measured in UBM from 2 to 4 weeks could be identified. Immunohistochemical staining for von Willebrand factor confirmed the presence of endothelium in the areas detected as re-endothelialized by the ultrasound assessment. Conclusion: Ultrasound BioMicroscopy can be used for longitudinal in vivo assessment of the re-endothelialization following arterial injury in rats.


Sign in / Sign up

Export Citation Format

Share Document