scholarly journals Inflammatory cytokine release from human peripheral blood mononuclear cells exposed to polyetheretherketone and titanium-6 aluminum-4 vanadium in vitro

2018 ◽  
Vol 33 (2) ◽  
pp. 245-258 ◽  
Author(s):  
Sargon Barkarmo ◽  
Anna-Karin Östberg ◽  
Carina Birgitta Johansson ◽  
Sebastian Franco-Tabares ◽  
Petra Hammarström Johansson ◽  
...  

Objective To investigate the cytokine expression profiles of blood cells exposed to polyetheretherketone and titanium-6 aluminum-4 vanadium materials in vitro. Materials and methods Coin-shaped samples composed of titanium-6 aluminum-4 vanadium, polyetheretherketone, and blasted polyetheretherketone were manufactured. The surfaces of the coins were characterized using optical interferometry, scanning electron microscopy, and contact angle measurements. Peripheral blood mononuclear cells collected from 10 blood donors were cultured for one, three, and six days in the presence or absence of the coins, and then assayed for cytokine production. Quantification of the peripheral blood mononuclear cells attached to the coins was performed using confocal microscopy after immunofluorescence staining. Results The machined titanium-6 aluminum-4 vanadium coins had a smoother surface topography compared to the machined polyetheretherketone and blasted polyetheretherketone. The highest mean contact angle was noted for the blasted polyetheretherketone, followed by the machined polyetheretherketone and titanium-6 aluminum-4 vanadium. The peripheral blood mononuclear cells produced significantly more proinflammatory cytokines when exposed to the polyetheretherketone surface compared to the titanium-6 aluminum-4 vanadium surface, while the blasted polyetheretherketone induced the highest level of proinflammatory cytokine release from the peripheral blood mononuclear cells. Significantly more cells attached to both polyetheretherketone surfaces, as compared to the titanium-6 aluminum-4 vanadium surface. Conclusion Polyetheretherketone induces a stronger inflammatory response from peripheral blood mononuclear cells than does titanium-6 aluminum-4 vanadium. Surface topography has an impact on cytokine release from peripheral blood mononuclear cells.

2020 ◽  
Author(s):  
Nuntiya Pahumunto ◽  
Amina Basic ◽  
Anna-Karin Östberg ◽  
Rawee Teanpaisan ◽  
Gunnar Dahlen

Abstract Background: This study evaluated the effect of oral lactobacilli on the cytotoxicity and cytokine release from peripheral blood mononuclear cells (PBMCs) when exposed to Aggregatibacter actinomycetemcomitans subtypes in vitro. The supernatants and cell wall extracts (CWEs) of eight A. actinomycetemcomitans strains, representing different subtypes, and three Lactobacillus strains were used. The PBMCs from six blood donors were exposed to supernatants and CWEs of A. actinomycetemcomitans or Lactobacillus strains alone or combinations and untreated cells as control. The cytotoxicity was determined by trypan blue exclusion method and IL-1β secretion by ELISA. TNF-α, IL-6, and IL-8 secretions were measured using Bioplex Multiplex Immunoassay. Results: Supernatants or CWEs from all bacterial strains showed cytotoxicity and IL-1β secretion and the subtypes of A. actinomycetemcomitans showed generally a significantly higher effect on PBMCs than that of the Lactobacillus strains. Two highly toxic A. actinomycetemcomitans strains (JP2 and JP2-like) induced a higher response than all other strains. When combined, Lactobacillus significantly reduced the toxicity and the IL-1β secretion induced by A. acinomycetemcomitans. The effect varied between the subtypes and the reduction was highest for the JP2 and JP2-like strains. The Lactobacillus paracasei strain SD1 had a higher reducing effect than the other Lactobacillus strains. This strain had a consistent reducing effect on all subtypes of A. actinomycetemcomitans cytotoxicity, and release of IL-1β, IL-6, IL-8, and TNF-α from PBMCs of the blood donors. A strong and significant variation in cytokine release between the six blood donors was noticed.Conclusions: Lactobacillus spp. and L. paracasei SD1 in particular, showed a limited but statistically significant reducing interaction with A. actinomycetemcomitans toxicity and release of cytokines in vitro.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nuntiya Pahumunto ◽  
Amina Basic ◽  
Anna-Karin Östberg ◽  
Rawee Teanpaisan ◽  
Gunnar Dahlen

Abstract Background This study evaluated the effect of oral lactobacilli on the cytotoxicity and cytokine release from peripheral blood mononuclear cells (PBMCs) when exposed to Aggregatibacter actinomycetemcomitans subtypes in vitro. The supernatants and cell wall extracts (CWEs) of eight A. actinomycetemcomitans strains, representing different subtypes, and three Lactobacillus strains were used. The PBMCs from six blood donors were exposed to supernatants and CWEs of A. actinomycetemcomitans or Lactobacillus strains alone or combinations and untreated cells as control. The cytotoxicity was determined by trypan blue exclusion method and IL-1β secretion by ELISA. TNF-α, IL-6, and IL-8 secretions were measured using Bioplex Multiplex Immunoassay. Results Supernatants or CWEs from all bacterial strains showed cytotoxicity and IL-1β secretion and the subtypes of A. actinomycetemcomitans showed generally a significantly higher effect on PBMCs than that of the Lactobacillus strains. Two highly toxic A. actinomycetemcomitans strains (JP2 and JP2-like) induced a higher response than all other strains. When combined, Lactobacillus significantly reduced the toxicity and the IL-1β secretion induced by A. acinomycetemcomitans. The effect varied between the subtypes and the reduction was highest for the JP2 and JP2-like strains. The Lactobacillus paracasei strain SD1 had a higher reducing effect than the other Lactobacillus strains. This strain had a consistent reducing effect on all subtypes of A. actinomycetemcomitans cytotoxicity, and release of IL-1β, IL-6, IL-8, and TNF-α from PBMCs of the blood donors. A strong and significant variation in cytokine release between the six blood donors was noticed. Conclusions Lactobacillus spp. and L. paracasei SD1 in particular, showed a limited but statistically significant reducing interaction with A. actinomycetemcomitans toxicity and release of cytokines in vitro.


2016 ◽  
Vol 42 (04) ◽  
pp. 195-201
Author(s):  
Yafen Cheng ◽  
Chung-Hsi Chou ◽  
Hsiang-Jung Tsai

Mycobacterium bovis (M. bovis) is causative agent of tuberculosis in cattle and humans populations. To understand its effects on gene expression profiles, we conducted an in vitro time-course study to identify transcriptional changes in infected bovine peripheral blood mononuclear cells (PBMCs), using quantitative RT-PCR. We discovered a likely involvement of C-type lectin domain family 4, member E (CLEC4E) in triggering a series of negative intracellular signaling via Syk/CARD9 pathway for cytokines, as early as 24 h post-infection (hpi). This is the first report confirming induction of CLEC4E and the Syk/CARD9 pathway in PBMCs in response to M. bovis infection, and these findings support the view that M. bovis inhibits signaling pathways of antimycobacterial host defense in bovine cells. In addition, M. bovis infection in PBMCs may suppress apoptosis by interfering with TNF-[Formula: see text] signaling. This study, contributes to a better understanding of M. bovis-reduced signal transduction and microbial changes in PBMCs earlier than 24 hpi.


2020 ◽  
Author(s):  
Nuntiya Pahumunto ◽  
Amina Basic ◽  
Anna-Karin Östberg ◽  
Rawee Teanpaisan ◽  
Gunnar Dahlen

Abstract Background: This study evaluated the effect of oral lactobacilli on the cytotoxicity and cytokine release from peripheral blood mononuclear cells (PBMCs) when exposed to Aggregatibacter actinomycetemcomitans subtypes in vitro. The supernatants and cell wall extracts (CWEs) of eight A. actinomycetemcomitans strains, representing different subtypes, and three Lactobacillus strains were used. The PBMCs from six blood donors were exposed to supernatants and CWEs of A. actinomycetemcomitans or Lactobacillus strains alone or combinations and untreated cells as control. The cytotoxicity was determined by trypan blue exclusion method and IL-1β secretion by ELISA. TNF-α, IL-6, and IL-8 secretions were measured using Bioplex Multiplex Immunoassay. Results: Supernatants or CWEs from all bacterial strains showed cytotoxicity and IL-1β secretion and the subtypes of A. actinomycetemcomitans showed generally a significantly higher effect on PBMCs than that of the Lactobacillus strains. Two highly toxic A. actinomycetemcomitans strains (JP2 and JP2-like) induced a higher response than all other strains. When combined, Lactobacillus significantly reduced the toxicity and the IL-1β secretion induced by A. acinomycetemcomitans . The effect varied between the subtypes and the reduction was highest for the JP2 and JP2-like strains. The Lactobacillus paracasei strain SD1 had a higher reducing effect than the other Lactobacillus strains. This strain had a consistent reducing effect on all subtypes of A. actinomycetemcomitans cytotoxicity, and release of IL-1β , IL-6, IL-8, and TNF-α from PBMCs of the blood donors. A strong and significant variation in cytokine release between the six blood donors was noticed. Conclusions: Lactobacillus spp. and L. paracasei SD1 in particular, showed a limited but statistically significant reducing interaction with A. actinomycetemcomitans toxicity and release of cytokines in vitro .


2020 ◽  
Author(s):  
Nuntiya Pahumunto ◽  
Amina Basic ◽  
Anna-Karin Östberg ◽  
Rawee Teanpaisan ◽  
Gunnar Dahlen

Abstract Background: This study evaluated the effect of oral lactobacilli on the cytotoxicity and cytokine release from peripheral blood mononuclear cells (PBMC) when exposed to Aggregatibacter actinomycetemcomitans subtypes in vitro. The supernatants and cell wall extracts (CWEs) of eight A. actinomycetemcomitans strains, representing different subtypes, and three Lactobacillus strains were used. The PBMC cells from six blood donors were exposed to supernatants and CWEs of A. actinomycetemcomitans or Lactobacillus strains alone or combinations and untreated cells as control. The cytotoxicity was determined by trypan blue exclusion-method and IL-1β secretion by ELISA. TNF-α, IL-6 and IL-8 secretions were measured using Bioplex Multiplex Immunoassay. Results: Supernatants or CWEs from all bacterial strains showed cytotoxicity and IL-1β secretion and the subtypes of A. actinomycetemcomitans showed generally a significantly higher effect on PBMC´s than that of the Lactobacillus strains. Two highly toxic A. actinomycetemcomitans strains (JP2 and JP2-like) induced a higher response than all other strains. Two non-serotypable strains (NS1 and NS2) showed a weaker although significant effect than other A. actinomycetemcomitans or Lactobacillus strains tested. CWEs showed generally a higher effect on PBMC´s than the supernatants. When combined, Lactobacillus significantly reduced the toxicity and IL-1β secretion induced by A. acinomycetemcomitans. The effect varied between the subtypes and the reduction was highest for the JP2 and JP2-like strains. The Lactobacillus paracasei strain SD1 had a higher reducing effect that the other Lactobacillus strains. This strain had a consistent reducing effect on all subtypes of A. actinomycetemcomitans cytotoxicity, and release of IL-1β and TNF-α from PBMC´s of the blood donors. A strong and significant variation in cytokine release between the 6 blood donors was noticed. Conclusions: Lactobacillus spp and L. paracasei strain SD1 in particular, showed a significant reducing interaction with A. actinomycetemcomitans toxicity and release of cytokines in vitro.


Sign in / Sign up

Export Citation Format

Share Document