Stamp Thermo-Hydroforming: A New Method for Processing Fiber-Reinforced Thermoplastic Composite Sheets

2004 ◽  
Vol 17 (1) ◽  
pp. 31-50 ◽  
Author(s):  
Michael A. Zampaloni ◽  
Farhang Pourboghrat ◽  
Woong-Ryeol Yu
2011 ◽  
Vol 186 ◽  
pp. 161-164 ◽  
Author(s):  
Jiang Min Ding ◽  
Yan Jie Sun ◽  
Chong Su

The new method is put forward for machining bigger holes of carbon fiber reinforced plastics (CFRP) in the face of the existent problems. The core drill is applied to machine CFRP from two end-faces according to regular order. The thrust is less than felted intensity between adjacent layers of CFRP in their whole process. Through special experiment, the method is not only economical but also convenient. The finishing workpieces have not defects such as burrs, avulsion and delamination. In addition, its precision and efficiency are very satisfactory to manufacturer.


2020 ◽  
Vol 10 (16) ◽  
pp. 5499
Author(s):  
Abera Tullu ◽  
Bong-Sul Lee ◽  
Ho-Yon Hwang

The anisotropic nature of fiber reinforced composite materials causes great challenges in predicting the inter-ply shear stress during forming. The complexity of understanding the functional dependency of inter-ply shear stress on multiple forming parameters such as blank temperature, pressure load, inter-ply slippage, and the relative fiber orientation angle of adjacent plies further limits the effort to produce a defect-free composite structure. Performing real experiments for various combinations of the mentioned parameters is both time consuming and economically costly. To overcome these difficulties, a surrogate-based analysis of inter-ply shear stress is proposed in this study. Based on the ranges of the forming parameters, computer experiments were performed. Using these experimental data, a radial basis function (RBF) based surrogate model that mimics inter-ply shear stress during composite press forming was developed. The fidelity of this model was checked with test data and found to be over 98% efficient.


Author(s):  
Fabrizio Quadrini ◽  
Claudia Prosperi ◽  
Loredana Santo

A rubber-toughened thermoplastic composite was produced by alternating long glass fiber reinforced polypropylene prepregs and rubber particles. Several composite laminates were obtained by changing the number of plies, the rubber powder size distribution, and the stacking sequence. Quasi-static mechanical tests (tensile and flexure) and time dependent tests (dynamic mechanical analysis and cyclic flexure) were carried out to evaluate strength and damping properties. As expected, 10 wt% rubber-filled laminates showed lower strengths than rubber-free laminates but the effect of the rubber on the composite damping properties was evident. At low rates, the rubber particles can also double the dissipated energy under cyclic loading, even if this effect disappears by increasing the test rate.


Author(s):  
Wang Xiaoyin ◽  
Liu Xiandong ◽  
Shan Yingchun ◽  
Wan Xiaofei ◽  
Liu Wanghao ◽  
...  

Aiming to the lightweight design of the long glass fiber reinforced thermoplastic (LGFT) composite wheel, this paper constructs the design process and the strength analysis method of long glass fiber reinforced thermoplastic wheel. First, the multi-objective topology optimization under multiple design spaces and multiple loading cases is conducted to obtain the robust structure, where the complicated ribs generated in design spaces are quite distinct from conventional steel or aluminum alloy wheel. The effects of weighting factors of two objectives and three loading cases on the topological results are discussed. And the long glass fiber reinforced thermoplastic wheel including the aluminum alloy insert is also designed in detail based on the concept structure and molding process. The novel metallic insert molded-in is another typical feature of long glass fiber reinforced thermoplastic wheel. Capturing the material anisotropy, the strength performances of long glass fiber reinforced thermoplastic wheel are simulated by using the finite element analysis method. The results show that there is a larger safety margin than the baseline wheel based on the maximum stress failure criterion. The long glass fiber reinforced thermoplastic wheel of 5.59 kg saves 22.3% weight compared to the aluminum alloy baseline. For the increasing requirement of automotive components lightweight design, the method and consideration in this paper may also provide some ways for the design and strength analysis of other carrying structures made of thermoplastic composite.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 21
Author(s):  
Min Jun Lee ◽  
Pil Gyu Lee ◽  
Il-Joon Bae ◽  
Jong Sung Won ◽  
Min Hong Jeon ◽  
...  

In this study, a carbon fiber-reinforced thermoplastic composite was fabricated using a new aromatic polyamide (APA) as a matrix. Non-isothermal crystallization behaviors in the cooling process of APA resin (a semi-crystalline polymer) and composite were analyzed by using a differential scanning calorimeter (DSC). To determine the optimum molding conditions, processing parameters such as the molding temperature and time were varied during compression molding of the Carbon/APA composite. The tensile and flexural properties and morphologies of the fabricated composites were analyzed. Molding at 270 °C and 50 MPa for 5 min. showed relatively good mechanical properties and morphologies; thus, this condition was selected as the optimal molding condition. In addition, to enhance the thermal conductivity of the Carbon/APA composite, a study was conducted to add hexagonal boron nitride (h-BN) as a filler. The surface of h-BN was oxidized to increase its miscibility in the resin, which resulted in better dispersity in the APA matrix. In conclusion, a Carbon/APA (h-BN) composite manufactured under optimal molding conditions with an APA resin containing surface-treated h-BN showed a thermal conductivity more than twice that of the case without h-BN.


Sign in / Sign up

Export Citation Format

Share Document