High electrical conductivity and elastic modulus composites comprising glass fiber-reinforced carbon-filled high-density polyethylene

2011 ◽  
Vol 26 (1) ◽  
pp. 30-43 ◽  
Author(s):  
Qiang Yuan ◽  
Stuart A Bateman ◽  
Shirley Shen ◽  
C Gloria-Esparza ◽  
Kenong Xia
Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1323 ◽  
Author(s):  
Yi Yuan ◽  
Changdong Liu ◽  
Meina Huang

Glass fiber reinforced polyolefin composite materials have many advantages regarding their performance and have been widely used in many fields. However, there are few reports on the simultaneously bidirectional self-enhancement of glass fiber reinforced polyethylene/polypropylene composite pipe. To self-reinforce the pipe’s circular and axial properties simultaneously, short glass fiber reinforced high-density polyethylene/polypropylene (SGF/HDPE/PP) pipes were extruded using a shearing–drawing two-dimensional compound stress field pipe-extrusion device. The effects of the rotating speed of the rotating shear sleeve on the orientation, heat behavior, microstructure, and tensile strength of the pipe were investigated in this paper. The microstructure was observed using scanning electron microscopy (SEM), and the crystal diffraction was analyzed using a polycrystalline X-ray diffractometer (WAXD), the heat behavior was measured using a differential scanning calorimeter (DSC), and the tensile strength was tested using a universal electronic tensile testing machine. The results showed that the shear induction effect induced by the shear rotating promoted the formation of the oriented structure of the crystal plate and SGFs along the circular and axial directions of the pipe simultaneously. Furthermore, it increased the crystallinity of the system, and self-improved the pipe’s circular and axial tensile strength at the same time.


2018 ◽  
Vol 772 ◽  
pp. 28-32 ◽  
Author(s):  
Sunarto Kaleg ◽  
Dody Ariawan ◽  
Kuncoro Diharjo

Aluminum tri-hydroxide (ATH) and montmorillonite (MMT) are capable to enhance flame retardancy of glass fiber reinforced polymer (GFRP). Nevertheless, the combination of both flame retardant fillers on changes in the mechanical properties of GFRP is not yet known. The characterization of flexural strength and scanning electron microscope (SEM) observation on GFRP composite has been done. The result of flexural properties testing shows that the addition of ATH or MMT or a combination of both on the GFRP causes a decrease in flexural strength. GFRP with increased ATH loading causes an increase in elastic modulus. Contrarily, the MMT addition causes a decrease in the elastic modulus of the GFRP composite. SEM results on the fractured samples show that the high content of ATH or MMT in the UP tends to agglomerate thus showing visible holes that were formed from the filler particles pulled out from the matrix.


Sign in / Sign up

Export Citation Format

Share Document