Preparation and properties of recycled poly(ethylene terephthalate) powder/halloysite nanotubes hybrid-filled natural rubber composites

2013 ◽  
Vol 28 (3) ◽  
pp. 415-430 ◽  
Author(s):  
H Nabil ◽  
H Ismail
2015 ◽  
Vol 735 ◽  
pp. 8-12
Author(s):  
Nurul Ain Jamaludin ◽  
Azman Hassan ◽  
Norhayani Othman ◽  
Mohammad Jawaid

The objective of this study is to investigate the effect of halloysite nanotubes (HNTs) loading on mechanical and thermal properties of poly(ethylene terephthalate)/polycarbonate (PET/PC) nanocomposites. Nanocomposites containing 70PET/30PC and 2-8 phr HNTs were prepared by twin screw extruder followed by injection moulding. As the percentage of HNTs increased, the flexural modulus increased. However, the flexural strength decreased with increasing HNTs content. The impact strength also decreased when HNTs increased. Thermogravimetry analysis of PET/PC/HNTs nanocomposites showed higher thermal stability at high HNTs content. However, on further addition of HNTs up to 8 phr, thermal stability of the nanocomposites decreased due to the poor dispersion of HNTs.


2011 ◽  
Vol 471-472 ◽  
pp. 622-627 ◽  
Author(s):  
H. Nabil ◽  
Hanafi Ismail ◽  
A.R. Azura

In this article, halloysite nanotubes (HNTs) and precipitated silica were replaced by recycled polyethylene terephthalate powder (R-PET) in natural rubber composites. Five different compositions of NR/HNTs/R-PET and NR/Silica/R-PET composites [i.e. 100/20/0, 100/15/5, 100/10/10, 100/5/15, and 100/0/20 parts per hundred rubber (phr)] were prepared on a two-roll-mill. Comparison of the curing behavior, tensile properties, and morphological characteristics of natural rubber composites was studied. The results indicated that the replacement of HNTs and silica by R-PET decreased the tensile strength, tensile modulus, and elongation at break of composites, but NR/Silica/R-PET composites showed the lower trend than that NR/HNTs/R-PET did. The negative effect of these properties could be explained by the decrement of crosslink density, R-PET is unable to be transferred the stress due to the weal rubber-fillers interactions, and the reducing of ductility of rubber matrix. The curing results revealed that, with replacement of HNTs and Silica by R-PET, the scorch time (ts2) and cure time (tc90) were decreased. Scanning electron microscopy investigation of tensile fracture surfaces confirmed that co-incorporation of NR/HNTs/R-PET would improve the dispersion of R-PET and enhanced the interactions between fillers and NR matrix rather than NR/Silica/R-PET composites.


Sign in / Sign up

Export Citation Format

Share Document