Effects of Halloysite Nanotubes on Mechanical and Thermal Stability of Poly(Ethylene Terephthalate)/Polycarbonate Nanocomposites

2015 ◽  
Vol 735 ◽  
pp. 8-12
Author(s):  
Nurul Ain Jamaludin ◽  
Azman Hassan ◽  
Norhayani Othman ◽  
Mohammad Jawaid

The objective of this study is to investigate the effect of halloysite nanotubes (HNTs) loading on mechanical and thermal properties of poly(ethylene terephthalate)/polycarbonate (PET/PC) nanocomposites. Nanocomposites containing 70PET/30PC and 2-8 phr HNTs were prepared by twin screw extruder followed by injection moulding. As the percentage of HNTs increased, the flexural modulus increased. However, the flexural strength decreased with increasing HNTs content. The impact strength also decreased when HNTs increased. Thermogravimetry analysis of PET/PC/HNTs nanocomposites showed higher thermal stability at high HNTs content. However, on further addition of HNTs up to 8 phr, thermal stability of the nanocomposites decreased due to the poor dispersion of HNTs.

2008 ◽  
Vol 109 (6) ◽  
pp. 4112-4120 ◽  
Author(s):  
Xuepei Yuan ◽  
Chuncheng Li ◽  
Guohu Guan ◽  
Yaonan Xiao ◽  
Dong Zhang

2014 ◽  
Vol 695 ◽  
pp. 131-134 ◽  
Author(s):  
Mohd Nazry Salleh ◽  
Ruey Shan Chen ◽  
Mohd Hafizuddin Ab Ghani ◽  
Farizul Hafiz Kasim ◽  
Ahmad Sahrim

Polymer blends based on recycled high density polyethylene (rHDPE) and recycled poly (ethylene terephthalate) (rPET) with two types of ethylene-glycidyl methacrylate copolymer (E-GMA), Lotader AX8840 and Lotader AX8900 as compatibilizer were produced in a co-rotating twin screw extruder. The effects of adding rPET content on the impact properties of rHDPE-rich blends were also investigated. The result showed an enhancement of about 80-270% in impact properties as compared to those of the Lotader AX8900. The impact strength also showed a decreasing trend as the rPET content was increased. The addition of E-GMA to the rHDPE/rPET blends was found to recover the blend toughness as well as improving the compatibility between HDPE and PET. In this study, the highest result was obtained for the rHDPE/rPET blends using Lotader AX8840 composition with 7.5% E-GMA content. FTIR analysis of the compatibilized blends confirmed the chemical interaction and improved interfacial bonding between the two phases.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3053
Author(s):  
Shichang Chen ◽  
Shangdong Xie ◽  
Shanshan Guang ◽  
Jianna Bao ◽  
Xianming Zhang ◽  
...  

Three kinds of modified poly(ethylene terephthalate) (PET) were prepared by solution blending combined with melt post-polycondensation, using 4,4′-thiodiphenol (TDP), 4,4′-oxydiphenol (ODP) and hydroquinone (HQ) as the bisphenols, respectively. The effects of TDP, ODP and HQ on melt post-polycondensation process and crystallization kinetics, melting behaviors, crystallinity and thermal stability of PET/bisphenols complexes were investigated in detail. Excellent chain growth of PET could be achieved by addition of 1 wt% bisphenols, but intrinsic viscosity of modified PET decreased with further bisphenols content. Intermolecular hydrogen bonding between carbonyl groups of PET and hydroxyl groups of bisphenols were verified by Fourier transform infrared spectroscopy. Compare to pure PET, both the crystallization rate and melting temperatures of PET/bisphenols complexes were reduced obviously, suggesting an impeded crystallization and reduced lamellar thickness. Moreover, the structural difference between TDP, ODP and HQ played an important role on crystallization kinetics. It was proposed that the crystallization rate of TDP modified PET was reduced significantly due to the larger amount of rigid benzene ring and larger polarity than that of PET with ODP or HQ. X-ray diffraction results showed that the crystalline structure of PET did not change from the incorporation of bisphenols, but crystallinity of PET decreased with increasing bisphenols content. Thermal stability of modified PET declined slightly, which was hardly affected by the molecular structure of bisphenols.


2019 ◽  
Vol 253 ◽  
pp. 02005
Author(s):  
Daniel Gere ◽  
Tibor Czigany

Nowadays, PLA is increasingly used as a packaging material, therefore it may appear in the petrol-based polymer waste stream. However, with the today’s mechanical recycling technologies PLA and PET bottles cannot be easily or cheaply separated. Therefore, our goal was to investigate the mechanical, morphological and thermal properties of different PET and PLA compounds in a wide range of compositions. We made different compounds from poly(ethylene-terephthalate) (PET) and poly(lactic acid) (PLA) by extrusion, and injection molded specimens from the compounds. We investigated the mechanical properties and the phase morphology of the samples and the thermal stability of the regranulates. PET and PLA are thermodynamically immiscible, therefore we observed a typical island-sea type morphology in SEM micrographs. When PLA was added, the mechanical properties (tensile strength, modulus, elongation at break and impact strength) changed significantly. The Young’s modulus increased, while elongation at break and impact strength decreased with the increase of the weight fraction of PLA. The TGA results indicated that the incorporation of PLA decreased the thermal stability of the PET/PLA blends.


Sign in / Sign up

Export Citation Format

Share Document