A comprehensive review of coconut shell powder composites: Preparation, processing, and characterization

2020 ◽  
pp. 089270572093080
Author(s):  
Seri Nur Iman Hidayah Ahmad Nadzri ◽  
Mohamed Thariq Hameed Sultan ◽  
Ain Umaira Md Shah ◽  
Syafiqah Nur Azrie Safri ◽  
Abdul Rahim Abu Talib ◽  
...  

Coconut shell is an agricultural residue, usually disposed of through open burning. Toxic gases have been emitted from the open burning phase and can therefore be detrimental to human health and the environment. Thus, to reduce the risk of pollution, researchers have developed a new technology by using agro-wastes to produce biocomposites. Coconut shell powder (CSP) is a solid nonfood waste, which can be potentially exploited to reduce the usage of synthetic fiber. Coconut shell is also low-cost and low weight material that can be used to reduce the production cost of and fuel consumption for transportation. This review has focused on the research carried out on the CSP loaded into different types of matrices, highlighting the fundamental, mechanical, physical, and thermal properties of CSP composites. This article also provides critical review of the development for CSP composite and the summary of the results presented in the literature, focusing in the properties of CSP with polymeric matrices and the application design for economical products.

2021 ◽  
Author(s):  
Adarsh M. Kalla ◽  
H. Manjunatha ◽  
R. Devaraju

Fibers are of two type’s natural fiber and synthetic fiber. Natural fibers include those made from plant and animal sources. The natural fiber composites can be very cost effective material and have turned out to be an alternative solution to the ever depleting petroleum sources and have reduced the nuisance of pollution. The production of complete natural fiber based materials as a substitute for petroleum-based products would not be an economical solution. A more viable solution would be to combine petroleum and bio-based resources to develop a cost-effective product with diverse applications. The application of natural fiber-reinforced composites has been extended to almost all fields such as building and construction industry, storage devices (post-boxes, grain storage silos, bio-gas containers etc.), furniture and electrical devices. Coconut shell is a lignocellulosic agro waste which is burnt or left to decay in environment. These can be a very interesting material as filler in biodegradable polymer composites, due to its good thermal stability compared to other agricultural waste. In context to this, review was carried out to assess the coconut shell powder reinforced epoxy composites and their mechanical, structural and thermal properties.


2013 ◽  
Vol 2 (1) ◽  
pp. 21-25
Author(s):  
Jhon Peri Rinaldo Sirait ◽  
Nico Sihombing ◽  
Zuhrina Masyithah

Coconut shell is one of agricultural wastes that having low commercial value. This research is objected to use coconut shell as the base material of producing surfactant. The use of coconut shell is basically due to its content of lignin, about 29,4%. The objective of this research is to obtain isolate lignin with increasing chatalis NaOH and H2SO4 with lignin identification, the effect of temperature and agitation rate of producing surfactant. The research was done in a reactor with temperature of 100 0C, 110 0C, 120 0C, 3 hours reaction time, pH 6, 80 rpm, 90 rpm, 100 rpm agitation rate, and coconut shell as the base material. Dry coconut shell is grinded and the powder is collected to be reacted. The coconut shell powder is reacted with sodium bisulfite solution with variation in ratio of 1:0,5.  The product is filtered to get filtrate and residue. The filtrate is further analyzed by using the FT-IR spectrophotometry method. From the research we get maximum purity of surfactant at sodium bisulfite with reactant ratio of 1:0,5;  Speed 100 rpm and temperature 120 0C.


2017 ◽  
Vol 5 (4) ◽  
pp. 75-82 ◽  
Author(s):  
Md. Tangimul Islam ◽  
Subrata Chandra Das ◽  
Joykrisna Saha ◽  
Debasree Paul ◽  
M. Tauhidul Islam ◽  
...  

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 265
Author(s):  
Natalia Sienkiewicz ◽  
Midhun Dominic ◽  
Jyotishkumar Parameswaranpillai

Epoxy resins as important organic matrices, thanks to their chemical structure and the possibility of modification, have unique properties, which contribute to the fact that these materials have been used in many composite industries for many years. Epoxy resins are repeatedly used in exacting applications due to their exquisite mechanical properties, thermal stability, scratch resistance, and chemical resistance. Moreover, epoxy materials also have really strong resistance to solvents, chemical attacks, and climatic aging. The presented features confirm the fact that there is a constant interest of scientists in the modification of resins and understanding its mechanisms, as well as in the development of these materials to obtain systems with the required properties. Most of the recent studies in the literature are focused on green fillers such as post-agricultural waste powder (cashew nuts powder, coconut shell powder, rice husks, date seed), grass fiber (bamboo fibers), bast/leaf fiber (hemp fibers, banana bark fibers, pineapple leaf), and other natural fibers (waste tea fibers, palm ash) as reinforcement for epoxy resins rather than traditional non-biodegradable fillers due to their sustainability, low cost, wide availability, and the use of waste, which is environmentally friendly. Furthermore, the advantages of natural fillers over traditional fillers are acceptable specific strength and modulus, lightweight, and good biodegradability, which is very desirable nowadays. Therefore, the development and progress of “green products” based on epoxy resin and natural fillers as reinforcements have been increasing. Many uses of natural plant-derived fillers include many plant wastes, such as banana bark, coconut shell, and waste peanut shell, can be found in the literature. Partially biodegradable polymers obtained by using natural fillers and epoxy polymers can successfully reduce the undesirable epoxy and synthetic fiber waste. Additionally, partially biopolymers based on epoxy resins, which will be presented in the paper, are more useful than commercial polymers due to the low cost and improved good thermomechanical properties.


2021 ◽  
pp. 1-12
Author(s):  
Lokesh K S ◽  
Bharath Kumar Shanmugam ◽  
Shrinivasa Mayya D ◽  
Panduranga B.P ◽  
Naveen kumar J R ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document