Immunity at Mucosal Surfaces

1996 ◽  
Vol 10 (1) ◽  
pp. 62-65 ◽  
Author(s):  
T.A. Brown

The mucosae form a barrier between our bodies and a hostile external environment. Diseases and extrinsic factors which impair mucosal function may lead to serious consequences. The mucosal immune system is the primary mediator of specific immunity at mucosal surfaces. As such, it is responsible for maintaining homeostasis and for defense against both overt and opportunistic pathogens. For this reason, it is also the target of many new vaccine strategies for the induction of mucosal immunity. This brief review will examine the mucosal immune system, its role in maintaining the integrity of the mucosa, and some of the strategies aimed at enhancing specific immunity.

2019 ◽  
Vol 15 (2) ◽  
pp. 154-165
Author(s):  
Oscar G. Gómez-Duarte ◽  
Pearay L. Ogra

The mucosal surfaces and the skin are the primary sites of interactions between the mammalian host and the external environment. These sites are exposed continuously to the diverse components of the environment, including subcellular, unicellular and multicellular organisms, dietary agents and food products; and numerous other soluble or cellular air or water borne products. The development of innate and adaptive immunity in the mucosal surfaces and the skin are the principal mechanism of mammalian defense evolved to date, in order to maintain effective homeostatic balance between the host and the external environment. The innate immune functions are mediated by a number of host specific Pathogen Recognition Receptors (PRR), designed to recognize unique Pathogen Associated Molecular Patterns (PAMP), essential to the molecular structure of the microorganism. The major components of specific adaptive immunity in the mucosal surfaces include the organized antigen-reactive lymphoid follicles in different inductive mucosal sites and the effector sites of the lamina propria and sub-epithelial regions, which contain lymphoid and plasma cells, derived by the homing of antigen sensitized cells from the inductive sites. The acquisition of environmental microbiome by the neonate in its mucosal surfaces and the skin, which begins before or immediately after birth, has been shown to play a critical and complex role in the development of mucosal immunity. This report provides an overview of the mammalian microbiome and highlights its role in the evolution and functional development of immunologic defenses in the mucosal surface under normal physiologic conditions and during infectious and non-infectious inflammatory pathologic states associated with altered microbiota.


Physiology ◽  
2001 ◽  
Vol 16 (6) ◽  
pp. 272-277 ◽  
Author(s):  
F. Stephen Laroux ◽  
Kevin P. Pavlick ◽  
Robert E. Wolf ◽  
Matthew B. Grisham

The mucosal interstitia of the intestine and colon are continuously exposed to large amounts of dietary and microbial antigens. Fortunately, the mucosal immune system has evolved efficient mechanisms to distinguish potentially pathogenic from nonpathological antigens. There are, however, situations in which this immune regulation fails, resulting in chronic gut inflammation.


2012 ◽  
Vol 13 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Ryan Taschuk ◽  
Philip J Griebel

AbstractCommensal microflora play many roles within the mammalian gastrointestinal tract (GIT) that benefit host physiology by way of direct or indirect interactions with mucosal surfaces. Commensal flora comprises members across all microbial phyla, although predominantly bacterial, with population dynamics varying with host species, genotype, and environmental factors. Little is known, however, about the complex mechanisms regulating host–commensal interactions that underlie this mutually beneficial relationship and how alterations in the microbiome may influence host development and susceptibility to infection. Research into the gut microbiome has intensified as it becomes increasingly evident that symbiont–host interactions have a significant impact on mucosal immunity and health. Furthermore, evidence that microbial populations vary significantly throughout the GIT suggest that regional differences in the microbiome may also influence immune function within distinct compartments of the GIT. Postpartum colonization of the GIT has been shown to have a direct effect on mucosal immune system development, but information is limited regarding regional effects of the microbiome on the development, activation, and maturation of the mucosal immune system. This review discusses factors influencing the colonization and establishment of the microbiome throughout the GIT of newborn calves and the evidence that regional differences in the microbiome influence mucosal immune system development and maturation. The implications of this complex interaction are also discussed in terms of possible effects on responses to enteric pathogens and vaccines.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Markus Schuppler ◽  
Martin J. Loessner

Listeria monocytogenesis an opportunistic foodborne pathogen causing listeriosis, an often fatal infection leading to meningitis, sepsis, or infection of the fetus and abortion in susceptible individuals. It was recently found that the bacterium can also cause acute, self-limiting febrile gastroenteritis in healthy individuals. In the intestinal tract,L. monocytogenespenetrates the mucosa directly via enterocytes, or indirectly via invasion of Peyer’s patches. Animal models forL. monocytogenesinfection have provided many insights into the mechanisms of pathogenesis, and the development of new model systems has allowed the investigation of factors that influence adaptation to the gastrointestinal environment as well as adhesion to and invasion of the intestinal mucosa. The mucosal surfaces of the gastrointestinal tract are permanently exposed to an enormous antigenic load derived from the gastrointestinal microbiota present in the human bowel. The integrity of the important epithelial barrier is maintained by the mucosal immune system and its interaction with the commensal flora via pattern recognition receptors (PRRs). Here, we discuss recent advances in our understanding of the interaction ofL. monocytogeneswith the host immune system that triggers the antibacterial immune responses on the mucosal surfaces of the human gastrointestinal tract.


2020 ◽  
Vol 11 ◽  
Author(s):  
Michael W. Russell ◽  
Zina Moldoveanu ◽  
Pearay L. Ogra ◽  
Jiri Mestecky

The mucosal immune system is the largest component of the entire immune system, having evolved to provide protection at the main sites of infectious threat: the mucosae. As SARS-CoV-2 initially infects the upper respiratory tract, its first interactions with the immune system must occur predominantly at the respiratory mucosal surfaces, during both inductive and effector phases of the response. However, almost all studies of the immune response in COVID-19 have focused exclusively on serum antibodies and systemic cell-mediated immunity including innate responses. This article proposes that there is a significant role for mucosal immunity and for secretory as well as circulating IgA antibodies in COVID-19, and that it is important to elucidate this in order to comprehend especially the asymptomatic and mild states of the infection, which appear to account for the majority of cases. Moreover, it is possible that mucosal immunity can be exploited for beneficial diagnostic, therapeutic, or prophylactic purposes.


1994 ◽  
Vol 10 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Jerry R. McGhee ◽  
Hiroshi Kiyono

AbstractIt is now established that the mucosal immune system is a separate entity and is regulated in a different fashion than that in peripheral lymphoid tissues (the systemic immune system). In this brief review, five selected areas within the field of mucosal immunity are discussed in the context of the goals for vaccines for the Children's Vaccine Initiative.


Sign in / Sign up

Export Citation Format

Share Document