Pre-Clinical Biocompatibility Testing of Peritoneal Dialysis Solutions

2000 ◽  
Vol 20 (5_suppl) ◽  
pp. 5-9 ◽  
Author(s):  
C.J. Holmes

Pre-clinical biocompatibility testing of peritoneal dialysis (PD) solutions has become an integral part of new solution development. The construction of a pre-clinical screening program for solution biocompatibility should take a hierarchical approach, starting with in vitro cell viability and function assays. The selection of cell types and assay systems for the in vitro studies should be broad enough to permit a balanced interpretation. Whenever possible, animal models are recommended for the next hierarchical level of testing, followed by human ex vivo study designs. Designs of the latter sort provide evidence that a new solution formulation is exerting an altered biological response in vivo; the response is not purely an in vitro artifact or restricted to a given animal species. This article discusses the various approaches available for biocompatibility testing during the pre-clinical phase of solution development, with an emphasis on the advantages and drawbacks of each method.

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


Author(s):  
Noemi Vanerio ◽  
Marco Stijnen ◽  
Bas A. J. M. de Mol ◽  
Linda M. Kock

Abstract Ex vivo systems represent important models to study vascular biology and to test medical devices, combining the advantages of in vitro and in vivo models such as controllability of parameters and the presence of biological response, respectively. The aim of this study was to develop a comprehensive ex vivo vascular bioreactor to long-term culture and study the behavior of native blood vessels under physiologically relevant conditions. The system was designed to allow for physiological mechanical loading in terms of pulsatile hemodynamics, shear stress, and longitudinal prestretch and ultrasound imaging for vessel diameter and morphology evaluation. In this first experience, porcine carotid arteries (n = 4) from slaughterhouse animals were cultured in the platform for 10 days at physiological temperature, CO2 and humidity using medium with blood-mimicking viscosity, components, and stability of composition. As expected, a significant increase in vessel diameter was observed during culture. Flow rate was adjusted according to diameter values to reproduce and maintain physiological shear stress, while pressure was kept physiological. Ultrasound imaging showed that the morphology and structure of cultured arteries were comparable to in vivo. Histological analyses showed preserved endothelium and extracellular matrix and neointimal tissue growth over 10 days of culture. In conclusion, we have developed a comprehensive pulsatile system in which a native blood vessel can be cultured under physiological conditions. The present model represents a significant step toward ex vivo testing of vascular therapies, devices, drug interaction, and as basis for further model developments.


Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A-G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of preexisting immunity detected across screened populations. However, many aspects of the basic virology of species D, such as their cellular tropism, receptor usage and in vivo biodistribution profile, remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49), a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen whilst avoiding liver interactions, such as intravascular vaccine applications.


2005 ◽  
Vol 28 (2) ◽  
pp. 177-187 ◽  
Author(s):  
E. Gaggiotti ◽  
A. Arduini ◽  
M. Bonomini ◽  
G. Valentini ◽  
G. Sacchi ◽  
...  

Aim Commercial glucose peritoneal dialysis solutions expose the peritoneum to hyperosmolar glucose containing variable amounts of non-enzymic breakdown products of glucose. These solutions are toxic for the peritoneum. The aim of the present study is to compare in vitro and in vivo characteristics of a new dialysis solution containing carnitine, a naturally occurring compound, as substitute of glucose. Material and Methods We compared in vitro and in the rabbit a new peritoneal dialysis solution containing carnitine, with two standard bicarbonate glucose peritoneal dialysis solutions and a solution containing icodextrin. Results In vitro and in vivo the solution containing carnitine seems to be more biocompatible than standard glucose solutions and those containing icodextrin. Conclusions In our study the peritoneal dialysis solution containing carnitine seems to prevent the mesothelial changes observed with solutions containing glucose. Since carnitine has been extensively studied and seems to be well tolerated by hemodialysis patients, even at high doses for long periods, clinical trials in humans may be planned in the near future.


2019 ◽  
Author(s):  
Oge Arum

Tailskin fibroblasts from multiple genotypes of slow aging mice have been shown to be resistant to a broad spectrum of toxicants. The molecular determinants for this in vitro effect, as well as for the delayed/ decelerated senescence of these mice, are uncertain. Here, we have extended this phenomenon of in vitro cellular stress resistance to neurons derived from the cerebral cortex of the Snell Dwarf Mouse. We further investigated the role of the transcription factor FoxO3a and the protein deacetylase SirT1, proteins known to positively mediate cellular stress-resistance, in this paradigm. We found that Snell Dwarfs have a greater proportion of nuclear-localized FoxO3a within their cerebrums than their littermate controls and that the same is true for their unstressed fibroblasts in vitro; yet, Snell Dwarf fibroblasts did not differ in FoxO3a properties in response to the application of three different concentrations of two disparate stresses. Similar results were obtained for SirT1, although SirT1 content did increase under the mild cellular stress of serum deprivation. Taken together, these results depict stress resistance in non-fibroblast cell types of incontrovertible physiological import explanted from slow aging mice. Also, these results strongly suggest that neither FoxO3a nor SirT1 robustly regulate the stress-resistance of Snell Dwarf Mouse cells in vitro, and thus might not play a role in other slow aging mammalian in vitro models in which stress resistance has been documented. That cerebral neurons ex vivo and unstressed fibroblasts in vitro display FoxO3a concentrations suggestive of increased activity introduce the possibility that FoxO3a might partially mediate the in vivo retardation of senescence of these mice.


Author(s):  
Purnima Singh ◽  
Tanmay Mondal ◽  
Kuldeep Kumar ◽  
Kinsuk Das ◽  
N Mahalakshmi ◽  
...  

Induced Pluripotent stem cells (iPSC) have a high ability to renew and differentiate themselves into various lineages and as vehicles of cell based therapy. Stem cell can differentiate under appropriate in vitro and in vivo conditions into different cell types. This study described the establishment of condition for in vitro expression of alpha MHC gene in cardiac differentiated canine iPSC (ciPSC). In vitro differentiation of canine iPSCs via embryoid bodies (EBs) were produced by ‘Hanging Drop’ method. EB’s were differentiated by using IMDM differentiation media: FBS – 10%, NEAA (100X) – 0.5%, Â-Mercaptoethanol- 100mM, Gentamycin- 5µg/ml supplemented with Azacytidine- 0.5µM. During differentiation, EBs were collected on day 4, 6, 8, 12, 16, 20 and 24 for characterization of cardiomyocytes specific marker expression. Total RNA from EBs were extracted by using Trizol method and subsequently cDNA were synthesized. The differentiated cells expressed cardiac specific gene (Alpha MHC) which started from day 6 of differentiation upto day 24 Immunocytochemistry and relative expression of cardiac specific genes revealed that ciPSC have the potential to differentiate into cardiomyocytes which can be used for cardiac tissue regeneration and as disease models for pharmaceutical testing.


1999 ◽  
Vol 19 (2_suppl) ◽  
pp. 365-369 ◽  
Author(s):  
Malgorzata Kuzlan-Pawlaczyk ◽  
Krzysztof Pawlaczyk ◽  
Katarzyna Wieczorowska Tobis ◽  
Alicja Polubinska ◽  
Justyna Wisniewska ◽  
...  

Objective To compare effects of N-acetylglucosamine (NAG) -based and glucose-based dialysis fluids on the function of peritoneal leukocytes in conditions of peritoneal dialysis. Design In vitro experiments on ex vivo isolated rat peritonealleukocytes. Materials Peritoneal leukocytes were isolated from rats on chronic peritoneal dialysis. On alternate days, fluid exchanges were performed with NAG-based or glucosebased dialysis solutions. After a 4-hour dwell, dialysate was drained and peritoneal leukocytes were incubated in vitro :I= lipopolysaccharide (LPS). Production of nitrites (index of NO synthesis), tumor necrosis factor α (TNFα), interleukin-1 β (IL -1 β), and interferon gamma (IFN-y) by unstimulated or stimulated peritoneal leukocytes originating from NAG-based or glucose-based fluid was measured. Results Dialysate cell count was lower during exchanges with NAG-based fluid (2113 :I= 615 cells/μL) as compared to glucose-based fluid (3643 :I= 1108 cells/μL; p < 0.01). Differential cell count was similar in both studied groups. Unstimulated peritoneal leukocytes from NAGbased dialysate produced more NO (nitrites) (0.65 ± 0.07 μmol per 106 cells) than did cells from glucose-based dialysate (0.26 :I= 0.09 μmol per 106 cells, p < 0.01). Stimulated peritoneal leukocytes from NAG-based dialysate produced more cytokines than did cells from glucose-based dialysate: TNFα, 135.2 ± 37.0 pg versus 70.2 :I= 21.8 pg per 106 cells respectively, p < 0.01; IL -1 β, 143.2 :I= 60.9 pg versus 99.1 :I= 22.4 pg per 106 cells respectively, p < 0.05; IFN-y, 16.2:1= 12.5 pg versus 6.0:1= 1.8 pg per 106 cells respectively, p <0.01. Conclusions We demonstrated that rat peritonealleukocytes exposed in vivoto NAG-based dialysis fluid have better ability to produce inflammatory mediators than do peritoneal leukocytes from the same donor, but exposed in vivo to glucose-based dialysis solution.


2010 ◽  
Vol 54 (3) ◽  
pp. 1290-1297 ◽  
Author(s):  
Peter Lischka ◽  
Guy Hewlett ◽  
Tobias Wunberg ◽  
Judith Baumeister ◽  
Daniela Paulsen ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) remains a serious threat for immunocompromised individuals, including transplant recipients and newborns. To date, all drugs licensed for the treatment of HCMV infection and disease target the viral DNA polymerase. Although these drugs are effective, several drawbacks are associated with their use, including toxicity and emergence of drug resistance. Hence, new and improved antivirals with novel molecular targets are urgently needed. Here we report on the antiviral properties of AIC246, a representative of a novel class of low-molecular-weight compounds that is currently undergoing clinical phase II studies. The anti-HCMV activity of AIC246 was evaluated in vitro and in vivo using various cell culture assays and an engineered mouse xenograft model. In addition, antiviral properties of the drug were characterized in comparison to the current gold standard ganciclovir. We demonstrate that AIC246 exhibits excellent in vitro inhibitory activity against HCMV laboratory strains and clinical isolates, retains activity against ganciclovir-resistant viruses, is well tolerated in different cell types (median selectivity index, 18,000), and exerts a potent in vivo efficacy in a mouse xenograft model. Moreover, we show that the antiviral block induced by AIC246 is reversible and the efficacy of the drug is not significantly affected by cell culture variations such as cell type or multiplicity of infection. Finally, initial mode-of-action analyses reveal that AIC246 targets a process in the viral replication cycle that occurs later than DNA synthesis. Thus, AIC246 acts via a mode of action that differs from that of polymerase inhibitors like ganciclovir.


Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A-G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of preexisting immunity detected across screened populations. However, many aspects of the basic virology of species D, such as their cellular tropism, receptor usage and in vivo biodistribution profile, remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49), a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen whilst avoiding liver interactions, such as intravascular vaccine applications.


Sign in / Sign up

Export Citation Format

Share Document