Preparation of high-strength polyimide membranes capped by ionic liquids

2020 ◽  
pp. 095400832097674
Author(s):  
Pengfei Jiang ◽  
Hongge Jia ◽  
Jingyu Xu ◽  
Hailiang Zhou ◽  
Mingyu Zhang ◽  
...  

In this study, we firstly used 1-carboxyethyl-3-methylimidazolium ionic liquid as a capping agent to terminate a binary linear polyimide containing different groups such as ether bonds, carbonyl groups, and fluorine, and prepared six kinds of polyimides capped with ionic liquids (IL-PI). The mechanical properties of the polyimide membranes capped with ionic liquids were higher than those of the uncapped polyimide membranes. The elastic modulus of polyimide membrane from 1,3-bis (4-aminophenoxy) benzene (BPDA) and 3,3′4,4′-benzophenone tetracarboxydianhydride (BTDA) by using ionic liquid as the end capping agent (IL-BPDA-BTDA) was 2012 MPa, which is about 70 times higher than that without the end capping agent. In a TG test, all polyimides capped by ionic liquids showed good thermal properties. The residual amount of the polyimides was more than 40% at 1000 °C, which was higher than the other uncapped polyimides. In conclusion, polyimide membranes with high temperature resistance and high mechanical strength were prepared through an ionic liquid termination method.

2021 ◽  
Vol 23 (6) ◽  
Author(s):  
M. Meischein ◽  
A. Ludwig

AbstractUpscaling of nanoparticle fabrication by sputtering into an ionic liquid is shown for the example of Cu. Long-time sputtering (24 h) into a large amount (50 mL) of the ionic liquid 1-butyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide [Bmim][(Tf)2 N] yields an amount of approximately 1 g Cu nanoparticles (mean spherical diameter (2.6 ± 1.1) nm), stabilized in ionic liquid without agglomerations. Extraction of Cu nanoparticles from the stabilizing ionic liquid was performed with the capping agent hexadecylamine. Extracted particles could be redispersed in other solvents, thus enabling applications of sputtered nanoparticles beyond ionic liquids.


2021 ◽  
Author(s):  
Michael Meischein ◽  
Alfred Ludwig

Abstract Up-scaling of nanoparticle fabrication by sputtering into an ionic liquid is shown for the example of Cu. Long-time sputtering (24 h) into a large amount (50 mL) of the ionic liquid 1-butyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide [Bmim][(Tf)2N] yields an amount of approximately 1 g Cu nanoparticles (mean spherical diameter (2.6 ± 1.1) nm), stabilized in ionic liquid without agglomerations. Extraction of Cu nanoparticles from the stabilizing ionic liquid was performed with the capping agent hexadecylamine. Extracted particles could be redispersed in other solvents, thus enabling applications of sputtered nanoparticles beyond ionic liquids.


2020 ◽  
Vol 44 (1) ◽  
pp. 200-209 ◽  
Author(s):  
Rahul Kumar Sharma ◽  
Yogendra Nath Chouryal ◽  
Anatoly I. Slesarev ◽  
Konstantin V. Ivanovskikh ◽  
Ivan I. Leonidov ◽  
...  

Phase pure BaF2 doped with Ce3+ (0.1%) nanocrystals are synthesized using an ionic liquid (IL) ([C4mim][BF4]) assisted solvothermal method where the IL is not only used as a reaction medium and a capping agent, but also as a reaction partner.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Palaniappan Selvakumar ◽  
Muthusamy Sarojadevi ◽  
Pudupadi Sundararajan

Abstract A novel, efficient methodology for the synthesis of phthalonitrile derivatives was investigated, using ionic liquid (IL) and microwave media as well as both simultaneously. Phthalonitrile monomers containing imide linkages were prepared from the reaction between aromatic dianhydrides, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BPTA), pyromellitic dianhydride (PMDA), 4,4′-(hexafluroisopropylidene) diphthalic anhydride (6FDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BTDA) and the end-capping agent 4-(3-aminophenoxy)phthalonitrile through the imidization reaction. The use of the IL1-butyl-3-methyl imidazoliumchloride as a solvent significantly increased the rate and yield of the reaction. The use of microwave irradiation and reaction parameters significantly shortened the reaction time while enhancing the purity. The polymerization of the prepared phthalonitrile monomers was carried out with 3 wt% of aromatic diamine 4,4′-oxydianiline (ODA) curing agent under microwave irradiation. It is shown that condensation was successfully carried out using the recyclable IL medium under microwave irradiation.


2017 ◽  
Author(s):  
Jose A. Pomposo

Understanding the miscibility behavior of ionic liquid (IL) / monomer, IL / polymer and IL / nanoparticle mixtures is critical for the use of ILs as green solvents in polymerization processes, and to rationalize recent observations concerning the superior solubility of some proteins in ILs when compared to standard solvents. In this work, the most relevant results obtained in terms of a three-component Flory-Huggins theory concerning the “Extra Solvent Power, ESP” of ILs when compared to traditional non-ionic solvents for monomeric solutes (case I), linear polymers (case II) and globular nanoparticles (case III) are presented. Moreover, useful ESP maps are drawn for the first time for IL mixtures corresponding to case I, II and III. Finally, a potential pathway to improve the miscibility of non-ionic polymers in ILs is also proposed.


2020 ◽  
Author(s):  
Swati Arora ◽  
Julisa Rozon ◽  
Jennifer Laaser

<div>In this work, we investigate the dynamics of ion motion in “doubly-polymerized” ionic liquids (DPILs) in which both charged species of an ionic liquid are covalently linked to the same polymer chains. Broadband dielectric spectroscopy is used to characterize these materials over a broad frequency and temperature range, and their behavior is compared to that of conventional “singly-polymerized” ionic liquids (SPILs) in which only one of the charged species is attached to the polymer chains. Polymerization of the DPIL decreases the bulk ionic conductivity by four orders of magnitude relative to both SPILs. The timescales for local ionic rearrangement are similarly found to be approximately four orders of magnitude slower in the DPILs than in the SPILs, and the DPILs also have a lower static dielectric constant. These results suggest that copolymerization of the ionic monomers affects ion motion on both the bulk and the local scales, with ion pairs serving to form strong physical crosslinks between the polymer chains. This study provides quantitative insight into the energetics and timescales of ion motion that drive the phenomenon of “ion locking” currently under investigation for new classes of organic electronics.</div>


2019 ◽  
Vol 16 (7) ◽  
pp. 550-555
Author(s):  
Dinesh K. Jangid ◽  
Keshav L. Ameta ◽  
Surbhi Dhadda ◽  
Anjali Guleria ◽  
Prakash G. Goswami ◽  
...  

Ionic Liquid assisted efficient synthesis of some 2-aminobenzenethiols has been reported using three different Ionic Liquids (ILs) namely methylimidazolium tetrafluoroborate [MIM]+[BF4]−, methylimidazolium chloride [MIM]+[Cl]− and methylimidazolium nitrate [MIM]+[NO3]−. A comparative study has been carried out for the synthesis of target molecules in the presence and absence of IL, leading to conclusion that maximum yield has been observed with [MIM]+[BF4]−.


2020 ◽  
Vol 16 (5) ◽  
pp. 652-659
Author(s):  
Asiye A. Avan ◽  
Hayati Filik

Background: An Ionic Liquid-based based Dispersive Liquid-Liquid Microextraction (IL-DLLME) method was not applied to preconcentration and determination of bilirubin. Ionic Liquids (ILs) are new chemical compounds. In recent years, Ionic Liquids (ILs) have been employed as alternative solvents to toxic organic solvents. Due to these perfect properties, ILs have already been applied in many analytical extraction processes, presenting high extraction yield and selectivity for analytes. Methods: In this study, IL-DLLME was applied to biological samples (urine and serum) for the spectrophotometric detection of bilirubin. For bilirubin analysis, the full-color development was based on the reaction with periodate in the presence of hydrochloric acid. The high affinity of bilirubin for the ionic liquid phase gave extraction percentages above 98% in 0.3 M HCl solution. Results: Several IL-extraction parameters were optimized and room temperature ionic liquid 1-butyl- 1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and ethanol were used as extraction and disperser solution. The linear range was found in the range of 0.5-6.0 μM (0.3-3.5 μg mL-1) and the limits of detection of the proposed method was 0.5 μM (0.3 μg mL-1). The proposed method was applied for the preconcentration and separation of trace bilirubin in real urine samples. Also, the recoveries for bilirubin in spiked biological samples (urine and serum) were found to be acceptable, between 95-102%. Conclusion: The proposed IL-DLLMEapproach was employed for the enrichment and determination of trace levels of bilirubin in urine samples using NaIO4 as an oxidizing agent and Uv-vis spectrophotometric detection. The periodate oxidation of bilirubin is rapid, effective, selective, and simple to perform. The method contains only HCl, NaOI4, and an anionic surfactant. The method may be useful for economizing in the consumption of reagents in bilirubin determining. The IL-DLLMEmethod ensures a high yield and has a low toxicity no skin sensitization, no mutagenicity and no ecotoxicity in an aquatic environment since only very low quantities of an IL is required. For full-color formation, no any extra auxiliary reagents are required. Besides, the IL-DLLME technique uses a low-cost instrument such as Uv-vis which is present in most of the medical laboratories.


2020 ◽  
Vol 14 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Dan Tian ◽  
Dan-Ni Yu ◽  
Yi-Ming Xu ◽  
Xu-Yin Ding ◽  
Zhou-Yu Zhang ◽  
...  

Background: Though there are many patents on silk, patents on sea silk are rare. Sea silk is one of the most coveted materials in the world, and the technology to make sea silk is at an extremely high risk of extinction. Unlike spider dragline silk and silkworm silk, this natural silk has been forgotten in the academic commune for millennia, though it has many fascinating properties: high strength, remarkable adhesion, extreme lightweight, and others. Method: Here we report that mussel-derived silk fibers can be fabricated by electrospinning. Instead of extracting proteins from byssus, we directly use the protein solution from alive blue mussels, which are intensely commercially used. The protein solution and the polyvinyl alcohol solution are mixed together to produce mussel-based silk fibers. Results: The mussel-based silk fibers have many special properties like high mechanical strength, remarkable super-contraction and good wetting properties. Conclusion: The electrospinning mussel-based silk fibers have the potential for use as a replacement for the rarest sea silk and as a new bio-inspired material with multi-functions.


Sign in / Sign up

Export Citation Format

Share Document