Burr formation and correlation with cutting force and acoustic emission signals

Author(s):  
Seyed Ali Niknam ◽  
Victor Songmene

The principle objective of this work is to present a methodology to evaluate the correlation between burr size attributes (thickness and height) and information computed from acoustic emission and cutting forces signals. In the proposed methodology, cutting force and acoustic emission signals were recorded in each cutting test, and each recorded original acoustic emission signal was segmented into two sections that correspond to steady-state cutting process (cutting signal) and cutting tool exit from the work part (exit signal). The dominant acoustic emission signal parameters including AEmax and AErms were computed from each segmented acoustic emission signal. The maximum values of directional cutting forces (FX, FY and FZ) were also measured in each trial. The experimental verification was conducted on slot milling operation which has relatively more complicated burr formation mechanism than that in many other traditional machining operations. Among slot milling burrs, the top-up milling side burrs and exit burrs along up milling side were largest and thickest burrs which were studied in this work. To evaluate the correlation between signal information and burr size, the computed signal information (5 parameters) and their interaction effects (10 parameters) were used to construct the input parameters of the multiple regression fitted models. Statistical methods were then used to assess the adequacy of individual input parameters and signal information. Using the acoustic emission and cutting force signals information in the input layer of multiple regression models, a high correlation was observed between the predicted and observed values of burr size. It was exhibited that due to complex burr formation mechanism in milling operation and strong interaction effects between cutting process parameters, no systematic relationship can be formulated between the milling burrs.

Author(s):  
Seyed Ali Niknam ◽  
Azziz Tiabi ◽  
Imed Zaghbani ◽  
Rene Kamguem ◽  
Victor Songmene

Burr formation is one of the main concerns usually faced by machining industries. Its presence leads to additional part edge finishing operations that are costly and time consuming. Burrs must be removed as they are source of dimensional errors, jamming and misalignment during assembly. In many cases burrs may injure workers during handling of machined part. Due to burr effect on machined part quality, manufacturing costs and productivity, more focus has been given to burr measurement/estimation methods. Large number of burr measurement methods has been introduced according to various criteria. The selection of appropriate burr size estimation method depends on number of factors such as desired level of quality and requested measuring accuracy. Traditional burr measurement methods are very time consuming and costly. This article aims to present empirical models using acoustic emission (AE) and cutting forces signals to predict entrance and exit burrs size in slot milling operation. These models can help estimating the burrs size without having to measure them. The machining tests were carried on Al 7075-T6 aluminum alloy using 3 levels of cutting speed, 3 levels of feed rate, 3 levels of cutting tool coating and 2 levels of depth of cut. Mathematical models were developed based on most sensitive AE parameters following statistical analysis, cutting forces and their interaction on predicting the entrance and exit burrs size. The proposed models correlate very well with the measured burrs size data.


2020 ◽  
pp. 61-64
Author(s):  
Yu.G. Kabaldin ◽  
A.A. Khlybov ◽  
M.S. Anosov ◽  
D.A. Shatagin

The study of metals in impact bending and indentation is considered. A bench is developed for assessing the character of failure on the example of 45 steel at low temperatures using the classification of acoustic emission signal pulses and a trained artificial neural network. The results of fractographic studies of samples on impact bending correlate well with the results of pulse recognition in the acoustic emission signal. Keywords acoustic emission, classification, artificial neural network, low temperature, character of failure, hardness. [email protected]


Sign in / Sign up

Export Citation Format

Share Document