Laser cutting optimization model with constraints: Maximization of material removal rate in CO2 laser cutting of mild steel

Author(s):  
Miloš Madić ◽  
Srđan Mladenović ◽  
Marin Gostimirović ◽  
Miroslav Radovanović ◽  
Predrag Janković

Taking full advantage of what laser cutting technology offers in terms of achieving superb quality cuts at low cost and high production rates requires the optimization of laser cutting parameters. This implies the need to formulate and solve different laser cutting optimization problems. In this article, an optimization model for CO2 laser cutting of mild steel is developed. The laser cutting optimization problem was explicitly formulated as a single-objective optimization problem with five non-linear constraints of the equality, inequality and range type. The goal was to determine the laser cutting parameter values so as to maximize the material removal rate while simultaneously considering practical process constraints related to dross formation, kerf width, perpendicularity deviation, surface roughness and severance energy. Two crossed experimental designs of different resolutions were performed in order to define six mathematical models, which were used in the formulation of the optimization problem. For the purpose of optimization, the exhaustive iterative search algorithm was applied, since it determines solutions whose optimality is guaranteed in the given discrete space of input variable values. The practical usability of the developed laser cutting optimization model and the effectiveness of the applied optimization approach were proved while solving a real case study aimed at the optimization of laser cutting parameters for cutting parts for the furnace industry.

2015 ◽  
Vol 799-800 ◽  
pp. 282-290
Author(s):  
Fredrick Joseph Otim ◽  
Seong Joo Choi

This paper presents a novel approach for the optimization of machining parameters on turning of Mild Steel alloy with multiple responses based on orthogonal array with grey relational analysis. Experiments are conducted on mild steel alloy. Turning tests are carried out using coated carbide insert under dry cutting condition. In this work, turning parameters such as cutting speed, feed rate and depth of cut are optimized considering the multiple responses such as Energy Consumption (EC), and Material Removal Rate (MRR). A grey relational grade (GRG) of 0.746 is determined from the grey analysis for experimental run 27 meaning the control factors of this combination exhibit a stronger relationship with the response variables. Therefore, a spindle speed of 440 rpm, a feed rate of 0.24 mm/rev, and a depth of cut of 0.75 mm is the optimal parameter combination for the turning operation. The order of importance determined for the controllable factors to the Energy Consumption, in sequence, is the feed rate, spindle speed and depth of cut; while order to the Material Removal Rate, in sequence is depth of cut, feed rate and spindle speed. Optimum levels of parameters have been identified based on the values of grey relational grade and then finally, it was observed through ANOVA that the feed rate is the most influential and significant control factor among the three cutting parameters when turning mild steel in the conventional lathe tool, in order to minimize Energy Consumption and maximize Material Removal Rate.


Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 90
Author(s):  
Mustafa Kuntoğlu ◽  
Osman Acar ◽  
Munish Kumar Gupta ◽  
Hacı Sağlam ◽  
Murat Sarikaya ◽  
...  

The present paper deals with the optimization of the three components of cutting forces and the Material Removal Rate (MRR) in the turning of AISI 5140 steel. The Harmonic Artificial Bee Colony Algorithm (H-ABC), which is an improved nature-inspired method, was compared with the Harmonic Bee Algorithm (HBA) and popular methods such as Taguchi’s S/N ratio and the Response Surface Methodology (RSM) in order to achieve the optimum parameters in machining applications. The experiments were performed under dry cutting conditions using three cutting speeds, three feed rates, and two depths of cuts. Quadratic regression equations were identified as the objective function for HBA to represent the relationship between the cutting parameters and responses, i.e., the cutting forces and MRR. According to the results, the RSM (72.1%) and H-ABC (64%) algorithms provide better composite desirability compared to the other techniques, namely Taguchi (43.4%) and HBA (47.2%). While the optimum parameters found by the H-ABC algorithm are better when considering cutting forces, RSM has a higher success rate for MRR. It is worth remarking that H-ABC provides an effective solution in comparison with the frequently used methods, which is promising for the optimization of the parameters in the turning of new-generation materials in the industry. There is a contradictory situation in maximizing the MRR and minimizing the cutting power simultaneously, because the affecting parameters have a reverse effect on these two response parameters. Comparing different types of methods provides a perspective in the selection of the optimum parameter design for industrial applications of the turning processes. This study stands as the first paper representing the comparative optimization approach for cutting forces and MRR.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1489-1503
Author(s):  
Marwa Q. Ibraheem

In this present work use a genetic algorithm for the selection of cutting conditions in milling operation such as cutting speed, feed and depth of cut to investigate the optimal value and the effects of it on the material removal rate and tool wear. The material selected for this work was Ti-6Al-4V Alloy using H13A carbide as a cutting tool. Two objective functions have been adopted gives minimum tool wear and maximum material removal rate that is simultaneously optimized. Finally, it does conclude from the results that the optimal value of cutting speed is (1992.601m/min), depth of cut is (1.55mm) and feed is (148.203mm/rev) for the present work.


2020 ◽  
Vol 111 (9-10) ◽  
pp. 2419-2439
Author(s):  
Tamal Ghosh ◽  
Yi Wang ◽  
Kristian Martinsen ◽  
Kesheng Wang

Abstract Optimization of the end milling process is a combinatorial task due to the involvement of a large number of process variables and performance characteristics. Process-specific numerical models or mathematical functions are required for the evaluation of parametric combinations in order to improve the quality of the machined parts and machining time. This problem could be categorized as the offline data-driven optimization problem. For such problems, the surrogate or predictive models are useful, which could be employed to approximate the objective functions for the optimization algorithms. This paper presents a data-driven surrogate-assisted optimizer to model the end mill cutting of aluminum alloy on a desktop milling machine. To facilitate that, material removal rate (MRR), surface roughness (Ra), and cutting forces are considered as the functions of tool diameter, spindle speed, feed rate, and depth of cut. The principal methodology is developed using a Bayesian regularized neural network (surrogate) and a beetle antennae search algorithm (optimizer) to perform the process optimization. The relationships among the process responses are studied using Kohonen’s self-organizing map. The proposed methodology is successfully compared with three different optimization techniques and shown to outperform them with improvements of 40.98% for MRR and 10.56% for Ra. The proposed surrogate-assisted optimization method is prompt and efficient in handling the offline machining data. Finally, the validation has been done using the experimental end milling cutting carried out on aluminum alloy to measure the surface roughness, material removal rate, and cutting forces using dynamometer for the optimal cutting parameters on desktop milling center. From the estimated surface roughness value of 0.4651 μm, the optimal cutting parameters have given a maximum material removal rate of 44.027 mm3/s with less amplitude of cutting force on the workpiece. The obtained test results show that more optimal surface quality and material removal can be achieved with the optimal set of parameters.


2011 ◽  
Vol 175 ◽  
pp. 289-293 ◽  
Author(s):  
Hao Liu ◽  
Chong Hu Wu ◽  
Rong De Chen

Side milling Ti6Al4V titanium alloys with fine grain carbide cutters is carried out. The influences of milling parameters on surface roughness are investigated and also discussed with average cutting thickness, material removal rate and vibration. The results reveal that the surface roughness increases with the increase of average cutting thickness and is primarily governed by the radial cutting depth.


Author(s):  
Atul Tiwari ◽  
Mohan Kumar Pradhan

To assure desire quality of machined products at minimum machining costs and maximum material removal rate, it is very important to select optimum parameters when metal cutting machine tool are used. Minimum Surface Roughness (Ra) is commonly desirable for the component; however Material Removal Rate (MRR) should be maximized. This chapter presents an approach for determination of the best cutting parameters precede to minimum Ra and maximum MRR simultaneously by integrating Response Surface Methodology with Multi-Objective Technique for Order Preference by Similarity to Ideal Solution and Teaching and learning based optimization algorithm in face milling of Al-6061 alloy. 30 experiments have been conducted based on RSM with 4 parameters, namely Speed, Feed, Depth of Cut and Coolant Speed and three levels each. ANOVA is performed to find the most influential input parameters for both MRR and Ra. Later the multi-objective attribution selection method TOPSIS and multi objective optimization method TLBO is used to optimize the responses.


2009 ◽  
Vol 76-78 ◽  
pp. 15-20 ◽  
Author(s):  
Lan Yan ◽  
Xue Kun Li ◽  
Feng Jiang ◽  
Zhi Xiong Zhou ◽  
Yi Ming Rong

The grinding process can be considered as micro-cutting processes with irregular abrasive grains on the surface of grinding wheel. Single grain cutting simulation of AISI D2 steel with a wide range of cutting parameters is carried out with AdvantEdgeTM. The effect of cutting parameters on cutting force, chip formation, material removal rate, and derived parameters such as the specific cutting force, critical depth of cut and shear angle is analyzed. The formation of chip, side burr and side flow is observed in the cutting zone. Material removal rate increases with the increase of depth of cut and cutting speed. Specific cutting force decreases with the increase of depth of cut resulting in size effect. The shear angle increases as the depth of cut and cutting speed increase. This factorial analysis of single grain cutting is adopted to facilitate the calculation of force consumption for each single abrasive grain in the grinding zone.


Sign in / Sign up

Export Citation Format

Share Document