scholarly journals Investigation of hybrid manufacturing of stainless steel 316L components using direct energy deposition

Author(s):  
Nikolaos Tapoglou ◽  
Joseph Clulow

Direct energy deposition has been established as one of the methods for additive manufacturing metallic parts. The combination of direct energy deposition capabilities with traditional machining centre capabilities has enabled over the past few years the creation of hybrid manufacturing cells that are able to additively manufacture and finish machine components under one platform. This article investigates the production of geometries using a hybrid, additive and subtractive approach. The parameters for depositing stainless steel 316L are initially investigated followed by an assessment of machinability of the additively manufactured material. Finally, the quality of the deposited and machined material was thoroughly examined with a series of destructive and non-destructive methods.

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4392
Author(s):  
Silja-Katharina Rittinghaus ◽  
Janett Schmelzer ◽  
Marcus Willi Rackel ◽  
Susanne Hemes ◽  
Andreas Vogelpoth ◽  
...  

While repair is mainly used to restore the original part geometry and properties, hybrid manufacturing aims to exploit the benefits of each respective manufacturing process regarding either processing itself or resulting part characteristics. Especially with the current implementation of additive manufacturing in the production of TiAl, turbine blades for both hybrid manufacturing and repair new opportunities are enabled. One main issue is the compatibility of the two or more material types involved, which either differ regarding composition or microstructure or both. In this study, a TNMTM-alloy (Ti-Nb-Mo) was manufactured by different processes (casting, forging, laser additive manufacturing) and identically heat-treated at 1290 °C. Chemical compositions, especially aluminum and oxygen contents, were measured, and the resulting microstructures were analyzed with Scanning Electron Microscopy (SEM) and High-energy X-ray diffraction (HEXRD). The properties were determined by hardness measurements and high-temperature compression tests. The comparison led to an overall assessment of the theoretical compatibility. Experiments to combine several processes were performed to evaluate the practical feasibility. Despite obvious differences in the final phase distribution caused by deviations in the chemical composition, the measured properties of the samples did not differ significantly. The feasibility of combining direct energy deposition (DED) with either casting or laser powder bed fusion (LPBF) was demonstrated by the successful build of the dense, crack-free hybrid material.


2019 ◽  
Vol 117 ◽  
pp. 6-17 ◽  
Author(s):  
Wook Jin Oh ◽  
Wook Jin Lee ◽  
Min Seob Kim ◽  
Jong Bae Jeon ◽  
Do Sik Shim

2021 ◽  
Vol 882 ◽  
pp. 11-20
Author(s):  
P. Azhagarsamy ◽  
K. Sekar ◽  
K.P. Murali

Laser-based Direct Energy Deposition (L-DED) is a very quick and freeform fabrication process. L-DED is useful to fabricate near net shape for engineering applications as well as medical applications. L-DED has been successful in making a variety of pure metals and its alloys for industrial needs. This review paper gives an overview of the research progress in various types of metallic materials like nickel alloys, Stainless Steel (SS), and Functionally Graded Materials (FGMs) fabricated by L-DED. Simultaneously, the effects of process parametric related factors also discussed. Introduction about nickel alloys, Stainless Steel, and FGMs relevant findings, and their advantages and disadvantages for these alloys are communicated. The paper shows the metallurgical, mechanical properties, and post-processing effects on L-DED fabricated nickel alloys, SS, and FGMs. This paper will be helpful to the researchers and industrialists and for those who are interested to do research in this field.


2019 ◽  
Author(s):  
Jakob D. Hamilton ◽  
Samantha Sorondo ◽  
Andrew Greeley ◽  
Bruce E. Kahn ◽  
Patricia Cyr ◽  
...  

Abstract In-envelope hybrid manufacturing systems comprised of directed energy deposition (DED) and machining provide flexibility for the fabrication of complex geometries with minimal setup changes. However, for these manufacturing set ups, the effects of deposition parameters such as laser power and scanning speed on the quality of the build remain relatively unexplored. An important aspect for developing components with reliable mechanical properties is a thorough understanding of DED thermodynamics during fabrication. Therefore, DED thermodynamics were defined based on the strengthening properties derived from the thermal gradient (G) and solidification rate (R) of the melt pool. Other factors influencing DED thermodynamics include substrate geometry and surface finish which are expected to affect cooling rates and adhesion, respectively. In this work, stainless steel 316L specimens were fabricated varying laser power intensity, scanning speed, and deposition substrate. The effect of these parameters on the microstructure of the sample components were analyzed. Microstructural evolution at various points within and between layers was studied and correlated to localized hardness. An increase in mechanical properties for fine, equiaxed grains demonstrates the Hall-Petch principle for strengthening of components.


Sign in / Sign up

Export Citation Format

Share Document