Data architecture and model design for Industry 4.0 components integration in cyber-physical production systems

Author(s):  
Vincent Havard ◽  
M’hammed Sahnoun ◽  
Belgacem Bettayeb ◽  
Fabrice Duval ◽  
David Baudry

In the context of Industry 4.0, Cyber-Physical Production Systems (CPPS) and digital twins are key technologies for the management of huge amount of data generated by Industrial Internet of things (IIoT) devices. However, the interoperability and flexibility of different components is still an important challenge so as to integrate them in the process and fit all industrial specific needs. Thus, the main contribution of this paper is to propose a database architecture and a data model associated allowing multiple agents to work collaboratively and synchronously to perform high-level tasks. Therefore, it fulfils requirements and needs of Industry 4.0: interoperability, scalability, flexibility and resilience. The proposed architecture and model are implemented on a cyber-physical production system (CPPS) which is used in order to show and discuss several use cases examples.

2020 ◽  
Author(s):  
Iris Gräßler

The article describes the setup of an experimentation and validation environment by extending a production laboratory: All relevant elements of the production laboratory were equipped with computer systems, so-called "industry 4.0 boxes", and interconnected via a peer-to-peer radio network. The "industry 4.0 boxes" are used to upgrade dedicated sensors for recording machine behaviour and communication technology to be integrated into decentralized production control. In addition, digital twins were implemented to map machine and user behaviour, enable control and support information acquisition and processing. Thereby, a research infrastructure is created for research on potentials of cyber-physical production systems. Research outcomes will be used as a decision basis for companies and for validation of production optimizations. This paper describes the concept and implementation of industry 4.0 functionalities and derives a general concept of simulation platforms for CPPS.


Author(s):  
E. N. Lapteva ◽  
O. V. Nasarochkina

The paper deals with problem analysis due to domestic engineering transition to the Industry 4.0 technology. It presents such innovative technologies as additive manufacturing (3D-printing), Industrial Internet of Things, total digitization of manufacturing (digital description of products and processes, virtual and augmented reality). Among the main highlighted problems the authors include a lack of unification and standardization at this stage of technology development; incompleteness of both domestic and international regulatory framework; shortage of qualified personnel.


2021 ◽  
pp. 204388692098158
Author(s):  
Dipankar Chakrabarti ◽  
Rohit Kumar ◽  
Soumya Sarkar ◽  
Arindam Mukherjee

Industrial Internet of Things emerged as one of the major technologies enabling Industry 4.0 for industries. Multiple start-ups started working in the Industrial Internet of Things field to support this new industrial revolution. Distronix, one such Industrial Internet of Things start-up of India, started operations in 2014, when companies were not even aware of Industrial Internet of Things. Distronix started executing fixed-fee projects for implementation of Industrial Internet of Things. They also started manufacturing sensors to support large customers end-to-end in their Industry 4.0 journey. With the advent of public cloud, companies started demanding pay-per-use model for the solution Distronix provided. This posed a major challenge to Distronix as they had developed technology skills focusing fixed-fee customized project delivery for their clients. The situation demanded that they change their business model from individual project delivery to creation of product sand-box with pre-registered sensors and pre-defined visualization layer to support use cases for Industrial Internet of Things implementation in multiple industry sectors. It forced Rohit Sarkar, the 26 years old entrepreneur and owner of Distronix, to upgrade capabilities of his employees and transform the business model to support pay-per-use economy popularized by public cloud providers. The case discusses the challenges Rohit faced to revamp their business model in such an emerging technology field, like, to develop new skills of the technical people to support such novel initiative, reorienting sales people towards pay as use model, developing new concept of plug and play modular product, devising innovative pricing, better alliance strategy and finding out a super early adopter.


Work ◽  
2021 ◽  
pp. 1-11
Author(s):  
Duan Pingli ◽  
Bala Anand Muthu ◽  
Seifedine Nimer Kadry

BACKGROUND: The manufacturing industry undergoes a new age, with significant changes taking place on several fronts. Companies devoted to digital transformation take their future plants inspired by the Internet of Things (IoT). The IoT is a worldwide network of interrelated physical devices, which is an essential component of the internet, including sensors, actuators, smart apps, computers, mechanical machines, and people. The effective allocation of the computing resources and the carrier is critical in the industrial internet of Things (IIoT) for smart production systems. Indeed, the existing assignment method in the smart production system cannot guarantee that resources meet the inherently complex and volatile requirements of the user are timely. Many research results on resource allocations in auction formats which have been implemented to consider the demand and real-time supply for smart development resources, but safety privacy and trust estimation issues related to these outcomes are not actively discussed. OBJECTIVES: The paper proposes a Hierarchical Trustful Resource Assignment (HTRA) and Trust Computing Algorithm (TCA) based on Vickrey Clarke-Groves (VGCs) in the computer carriers necessary resources to communicate wirelessly among IIoT devices and gateways, and the allocation of CPU resources for processing information at the CPC. RESULTS: Finally, experimental findings demonstrate that when the IIoT equipment and gateways are valid, the utilities of each participant are improved. CONCLUSION: This is an easy and powerful method to guarantee that intelligent manufacturing components genuinely work for their purposes, which want to integrate each element into a system without interactions with each other.


2021 ◽  
Vol 58 ◽  
pp. 176-192
Author(s):  
Diego G.S. Pivoto ◽  
Luiz F.F. de Almeida ◽  
Rodrigo da Rosa Righi ◽  
Joel J.P.C. Rodrigues ◽  
Alexandre Baratella Lugli ◽  
...  

Author(s):  
Guido Vinci Carlavan ◽  
Daniel Alejandro Rossit

Industry 4.0 proposes the incorporation of information technologies at all levels of the production process. By incorporating these technologies, Industry 4.0 provides new tools for production planning processes, allowing to address problems in an innovative and efficient manner. From these technologies and tools, it is that in this work a One-of-a-Kind Production (OKP) process is approached, where the products tend to be highly customized. OKP implies working with a very large variability within production, demanding very efficient planning systems. For this, a planning model based on CONWIP-type strategies was proposed, which seeks to level the production of a shop floor configured in the form of a job shop. Even more, for having a more realistic shop-floor representation, machine failures have been included in the model. In turn, different dispatching rules were proposed to study the performance and analyze the behaviour of the system. From the results obtained, it is observed that, when the production demand is very exigent in relation with the capacity of the system, the dispatching rules that analyze the workload generated by each job tend to perform better. However, when the demand on the capacity of the production system is less intense, the rules associated with due dates are the ones that obtain the best results.


Author(s):  
Vishwas D. B. ◽  
Gowtham M. ◽  
Gururaj H. L. ◽  
Sam Goundar

In the era of mechanical digitalization, organizations are progressively putting resources into apparatuses and arrangements that permit their procedures, machines, workers, and even the products themselves to be incorporated into a solitary coordinated system for information assortment, information examination, the assessment of organization advancement, and execution improvement. This chapter presents a reference guide and review for propelling an Industry 4.0 venture from plan to execution, according to base on the economic and scientific policy of European parliament, applying increasingly effective creation forms, and accomplishing better profitability and economies of scale may likewise bring about expanded financial manageability. This chapter present the contextual analysis of a few Industry 4.0 applications. Authors give suggestions coordinating the progression of Industry 4.0. This section briefly portrays the advancement of IIoT 4.0. The change of ubiquitous computing through the internet of things has numerous difficulties related with it.


Author(s):  
Luis Alberto Estrada-Jimenez ◽  
Terrin Pulikottil ◽  
Nguyen Ngoc Hien ◽  
Agajan Torayev ◽  
Hamood Ur Rehman ◽  
...  

Interoperability in smart manufacturing refers to how interconnected cyber-physical components exchange information and interact. This is still an exploratory topic, and despite the increasing number of applications, many challenges remain open. This chapter presents an integrative framework to understand common practices, concepts, and technologies used in trending research to achieve interoperability in production systems. The chapter starts with the question of what interoperability is and provides an alternative answer based on influential works in the field, followed by the presentation of important reference models and their relation to smart manufacturing. It continues by discussing different types of interoperability, data formats, and common ontologies necessary for the integration of heterogeneous systems and the contribution of emerging technologies in achieving interoperability. This chapter ends with a discussion of a recent use case and final remarks.


Sign in / Sign up

Export Citation Format

Share Document