Free vibration analysis of functionally graded beams using an exact plane elasticity approach

Author(s):  
K Celebi ◽  
N Tutuncu

Exact natural frequencies of functionally graded beams are determined using plane elasticity theory. The analysis yields infinitely many frequencies. For verification purposes, a comparison with the existing beam theory results is performed and a close agreement is observed for slender members. The elasticity solutions are general in the sense that they are valid for slender members as well as short and thick structural elements. Both flexural and axial free vibration mode shapes are presented for top and bottom surfaces and the effect of the beam thickness is discussed. The exact results presented herein can be used as benchmarks for future research of free vibration behavior of short and thick functionally graded material beams.

2018 ◽  
Vol 33 (5) ◽  
pp. 673-724 ◽  
Author(s):  
Pavan Kumar ◽  
CV Srinivasa

Many review articles were published on free vibration and buckling of laminated composites, sandwich plates, and shells. The present article reviews the literature on the buckling and free vibration analysis of shear deformable isotropic and laminated composite sandwich plates and shells using various methods available for plates in the past few decades. Various theories, finite element modeling, and experimentations have been reported for the analysis of sandwich plates and shells. Few papers on functionally graded material plates, plates with smart skin (electrorheological, magnetorheological, and piezoelectric), and also viscoelastic materials were also reviewed. The scope for future research on sandwich plates and shells was also accessed.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Nguyen Van Dung ◽  
Nguyen Chi Tho ◽  
Nguyen Manh Ha ◽  
Vu Trong Hieu

Rotating structures can be easily encountered in engineering practice such as turbines, helicopter propellers, railroad tracks in turning positions, and so on. In such cases, it can be seen as a moving beam that rotates around a fixed axis. These structures commonly operate in hot weather; as a result, the arising temperature significantly changes their mechanical response, so studying the mechanical behavior of these structures in a temperature environment has great implications for design and use in practice. This work is the first exploration using the new shear deformation theory-type hyperbolic sine functions to carry out the free vibration analysis of the rotating functionally graded graphene beam resting on the elastic foundation taking into account the effects of both temperature and the initial geometrical imperfection. Equations for determining the fundamental frequencies as well as the vibration mode shapes of the beam are established, as mentioned, by the finite element method. The beam material is reinforced with graphene platelets (GPLs) with three types of GPL distribution ratios. The numerical results show numerous new points that have not been published before, especially the influence of the rotational speed, temperature, and material distribution on the free vibration response of the structure.


2017 ◽  
Vol 14 (02) ◽  
pp. 1750011 ◽  
Author(s):  
T. Nguyen-Thoi ◽  
T. Rabczuk ◽  
V. Ho-Huu ◽  
L. Le-Anh ◽  
H. Dang-Trung ◽  
...  

A cell-based smoothed three-node Mindlin plate element (CS-MIN3) was recently proposed and proven to be robust for static and free vibration analyses of Mindlin plates. The method improves significantly the accuracy of the solution due to softening effect of the cell-based strain smoothing technique. In addition, it is very flexible to apply for arbitrary complicated geometric domains due to using only three-node triangular elements which can be easily generated automatically. However so far, the CS-MIN3 has been only developed for isotropic material and for analyzing intact structures without possessing internal cracks. The paper hence tries to extend the CS-MIN3 by integrating itself with functionally graded material (FGM) and enriched functions of the extended finite element method (XFEM) to give a so-called extended cell-based smoothed three-node Mindlin plate (XCS-MIN3) for free vibration analysis of cracked FGM plates. Three numerical examples with different conditions are solved and compared with previous published results to illustrate the accuracy and reliability of the XCS-MIN3 for free vibration analysis of cracked FGM plates.


2014 ◽  
Vol 971-973 ◽  
pp. 548-564 ◽  
Author(s):  
Boutahar Lhoucine ◽  
Khalid El Bikri ◽  
Benamar Rhali

The geometrically non-linear axisymmetric free vibration of functionally graded annular plate (FGAP) having both edges clamped is analyzed in this paper. The material properties of the constituents are assumed to be temperature-independent and the effective properties of FGAP are graded in thickness direction according to a simple power law function in terms of the volume fractions. Based on the classical Plate theory and von Karman type non-linear strain-displacement relationships, the nonlinear governing equations of motion are derived using Hamilton’s principle. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to twice the plate thickness. The numerical results are given for the first two axisymmetric non-linear mode shapes, for a wide range of vibration amplitudes and they are presented either in a tabular or in a graphical form, to show the significant effects that the large vibration amplitudes and the variation in material properties have on the non-linear frequencies and the associated bending stresses of the FGAP.


Sign in / Sign up

Export Citation Format

Share Document