Structural synthesis of a class of 3-DOF wrist mechanisms with redundantly-actuated closed-loop units

Author(s):  
Haibo Qu ◽  
Yuefa Fang ◽  
Sheng Guo

In this paper, a new method is proposed for the structural synthesis of a class of redundantly-actuated parallel wrists (RaPWs) with three rotational degrees of freedom of the moving platform and symmetrical structures based on screw theory. First, the new procedure for structural synthesis of RaPWs with closed-loop actuated unit is proposed and the constraint system of the moving platform of RaPWs is analyzed. Then, considering the inclusion relation between the primary constraint system and the limb constraint system, the type of kinematic limb is determined. The synthesis of type-1 and type-2 kinematic limbs is dealt with based on the obtained closed-loop actuated unit and open-loop sub-limb. Next, the RaPWs are synthesized and a number of new RaPWs have been identified. Finally, the condition for proper actuator selections of RaPWs is revealed, and one example is used to perform the validation.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yong Xu ◽  
Zheng Liang ◽  
Jiali Liu

This paper proposes the concept of full configuration state of metamorphic mechanism. Based on the concept, the configuration synthesis principle of metamorphic parallel mechanism is put forward. Firstly, a metamorphic parallel mechanism in full configuration state is synthesized, and then full configuration state evolves into a specific configuration state by increasing constraints or decreasing degrees of freedom. A reconfigurable moving platform based on the triple symmetric Bricard spatial closed-loop mechanism with a single degree of freedom is proposed. Based on this, a new method for switching motion configuration states of the metamorphic parallel mechanism is constructed. According to the configuration synthesis principle presented above, a novel metamorphic parallel mechanism that can switch between three- and four-degree-of-freedom is synthesized, and then the triple symmetric Bricard spatial closed-loop mechanism is used as the reconfigurable moving platform (that is, the reconfigurable foot of a walking robot) of the metamorphic mechanism, and thus, a novel metamorphic parallel leg mechanism is created. The screw theory is used to verify the degrees of freedom of the new type of metamorphic parallel leg. The proposed metamorphic parallel leg mechanism is expected to improve flexibility and adaptability of walking robots in unstructured environment.


2019 ◽  
Vol 15 (1) ◽  
pp. 66-80
Author(s):  
Xiaodong Jin ◽  
Yuefa Fang ◽  
Dan Zhang ◽  
Xueling Luo

AbstractThe parallel spindle heads with high rotational capability are demanded in the area of multi-axis machine tools and 3D printers. This paper focuses on designing a class of 2R1T (R: Rotation; T: Translation) parallel spindle heads and the corresponding collaborative 5-axis manipulators with 2-dimension (2D) large rotational angles. In order to construct 2D rotational degrees of freedom (DOFs), a platform with 2D revolute joints is proposed first. Based on the constraint screw theory, the feasible limbs that can be connected in the platform are synthesized. In order to provide constant rotational axis for the platform, a class of redundant limbs are designed. A class of redundant 2R1T parallel spindle heads is obtained by connecting the redundant limbs with the platform and the redundant characteristics are verified by the modified Grübler-Kutzbach criterion. The corresponding 5-axis collaborative manipulators are presented by constructing a 2-DOF series translational bottom moving platform. The inverse kinematics and the orientation workspace as well as the decoupling characteristics of this type of 2R1T parallel spindle heads are analyzed. The results show that these manipulators have large 2D rotational angles than the traditional A3/Z3 heads and can be potentially used in the application of multi-axis machine tools and the 3D printers.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yongquan Li ◽  
Yang Zhang ◽  
Lijie Zhang

Abstract The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.


2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Chunshi Feng ◽  
Shuang Cong ◽  
Weiwei Shang

In this paper, the kinematic calibration of a planar two-degree-of-freedom redundantly actuated parallel manipulator is studied without any assumption on parameters. A cost function based on closed-loop constraint equations is first formulated. Using plane geometry theory, we analyze the pose transformations that bring infinite solutions and present a kinematic calibration integrated of closed-loop and open-loop methods. In the integrated method, the closed-loop calibration solves all the solutions that fit the constraint equations, and the open-loop calibration guarantees the uniqueness of the solution. In the experiments, differential evolution is applied to compute the solution set, for its advantages in computing multi-optima. Experimental results show that all the parameters involved are calibrated with high accuracy.


Robotica ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Mario A. García-Murillo ◽  
Eduardo Castillo-Castaneda

SUMMARYThis study addresses the kinematics of a six-degrees-of-freedom parallel manipulator whose moving platform is a regular triangular prism. The moving and fixed platforms are connected to each other by means of two identical parallel manipulators. Simple forward kinematics and reduced singular regions are the main benefits offered by the proposed parallel manipulator. The Input–Output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. A case study, which is verified with the aid of commercially available software, is included with the purpose to exemplify the application of the method of kinematic analysis.


Author(s):  
Chunxu Tian ◽  
Yuefa Fang ◽  
Sheng Guo ◽  
Haibo Qu

This paper presents a planar five-bar metamorphic linkage which has five phases resulting from locking of motors. Reconfigurable limbs are constructed by integrating the five-bar metamorphic linage as sub-chains. The branch transition of metamorphic linkage is analyzed. By adding appropriate joints to the planer five-bar metamorphic linkage, reconfigurable limbs whose constraint can switch among no constraint, a constrained force and a constrained couple are obtained. Serial limb structures that can provide a constraint force and a constraint couple are synthesized based on screw theory. Reconfigurable limbs that have five configurations associated with the five phases of the five-bar metamorphic linkage are assembled with 4-DOF (degrees-of-freedom) serial chains. A class of reconfigurable parallel mechanisms is derived by connecting the moving platform to the base with three identical kinematic limbs. These parallel mechanisms can perform various output motion modes such as 3T, 3R, 2T1R, 1T2R, 3T1R, 2T2R, 1T3R, 2T3R, 3T2R and 3T3R. Finally, the potential application of the proposed mechanisms is analyzed and conclusions are drawn.


2019 ◽  
Vol 11 (6) ◽  
Author(s):  
Yaojun Wang ◽  
Bruno Belzile ◽  
Jorge Angeles ◽  
Qinchuan Li

Abstract Dynamics modeling is essential in the design and control of mechanical systems, the focus of the paper being redundantly actuated systems, which bring about special challenges. The authors resort to the natural orthogonal complement (NOC), based on an adaptation of screw theory, to derive the dynamics model. Benefiting from the elimination of the constraint wrenches, the NOC offers a simple, systematic alternative to the modeling of redundantly actuated mechanical systems. The optimum actuator-torque distribution is determined via Euclidean-norm minimization; then, by relying on the QR-decomposition, an efficient and robust method is produced to compute explicitly the right Moore–Penrose generalized inverse of the coefficient matrix. The methodology is illustrated via a case study involving a redundantly actuated parallel-kinematics machine with three degrees of freedom and four actuators.


2020 ◽  
Vol 106 (1) ◽  
pp. 55-63
Author(s):  
Clara Viñals ◽  
Aleix Beneyto ◽  
Juan-Fernando Martín-SanJosé ◽  
Clara Furió-Novejarque ◽  
Arthur Bertachi ◽  
...  

Abstract Objective To evaluate the safety and performance of a new multivariable closed-loop (MCL) glucose controller with automatic carbohydrate recommendation during and after unannounced and announced exercise in adults with type 1 diabetes (T1D). Research Design and Methods A randomized, 3-arm, crossover clinical trial was conducted. Participants completed a heavy aerobic exercise session including three 15-minute sets on a cycle ergometer with 5 minutes rest in between. In a randomly determined order, we compared MCL control with unannounced (CLNA) and announced (CLA) exercise to open-loop therapy (OL). Adults with T1D, insulin pump users, and those with hemoglobin (Hb)A1c between 6.0% and 8.5% were eligible. We investigated glucose control during and 3 hours after exercise. Results Ten participants (aged 40.8 ± 7.0 years; HbA1c of 7.3 ± 0.8%) participated. The use of the MCL in both closed-loop arms decreased the time spent <70 mg/dL of sensor glucose (0.0%, [0.0-16.8] and 0.0%, [0.0-19.2] vs 16.2%, [0.0-26.0], (%, [percentile 10-90]) CLNA and CLA vs OL respectively; P = 0.047, P = 0.063) and the number of hypoglycemic events when compared with OL (CLNA 4 and CLA 3 vs OL 8; P = 0.218, P = 0.250). The use of the MCL system increased the proportion of time within 70 to 180 mg/dL (87.8%, [51.1-100] and 91.9%, [58.7-100] vs 81.1%, [65.4-87.0], (%, [percentile 10-90]) CLNA and CLA vs OL respectively; P = 0.227, P = 0.039). This was achieved with the administration of similar doses of insulin and a reduced amount of carbohydrates. Conclusions The MCL with automatic carbohydrate recommendation performed well and was safe during and after both unannounced and announced exercise, maintaining glucose mostly within the target range and reducing the risk of hypoglycemia despite a reduced amount of carbohydrate intake. Register Clinicaltrials.gov: NCT03577158


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Kristan Marlow ◽  
Mats Isaksson ◽  
Jian S. Dai ◽  
Saeid Nahavandi

Singularities are one of the most important issues affecting the performance of parallel mechanisms. A parallel mechanism with less than six degrees of freedom (6DOF) is classed as having lower mobility. In addition to input–output singularities, such mechanisms potentially suffer from singularities among their constraints. Furthermore, the utilization of closed-loop subchains (CLSCs) may introduce additional singularities, which can strongly affect the motion/force transmission ability of the entire mechanism. In this paper, we propose a technique for the analysis of singularities occurring within planar CLSCs, along with a finite, dimensionless, frame invariant index, based on screw theory, for examining the closeness to these singularities. The integration of the proposed index with existing performance measures is discussed in detail and exemplified on a prototype industrial parallel mechanism.


2020 ◽  
Vol 10 (17) ◽  
pp. 6012
Author(s):  
Tomaž Kos ◽  
Mikuláš Huba ◽  
Damir Vrančić

Integrating systems are frequently encountered in power plants, paper-production plants, storage tanks, distillation columns, chemical reactors, and the oil industry. Due to the open-loop instability that leads to an unbounded output from a bounded input, the efficient control of integrating systems remains a challenging task. Many researchers have addressed the control of integrating processes: Some solutions are based on a single closed-loop controller, while others employ more complex control structures. However, it is difficult to find one solution requiring only a simple tuning procedure for the process. This is the advantage of the magnitude optimum multiple integration (MOMI) tuning method. In this paper, we propose an extension of the MOMI tuning method for integrating processes, controlled with a two-degrees-of-freedom (2-DOF) proportional–integral–derivative (PID) controller. This extension allows for calculations of the controller parameters from either time domain measurements or from a process transfer function of an arbitrary order with a time-delay, when both approaches are exactly equivalent. The user has the option to emphasise disturbance-rejection or tracking with the reference weighting factor b or apply two different reference filters for the best overall response. The proposed extension was also compared to other tuning methods for the control of integrating processes and tested on a charge-amplifier drift-compensation system. All closed-loop responses were relatively fast and stable, all in accordance with the magnitude optimum criteria.


Sign in / Sign up

Export Citation Format

Share Document