Comparison of evolutionary techniques for the optimization of machining fixture layout under dynamic conditions

Author(s):  
M Sabareeswaran ◽  
KP Padmanaban ◽  
KA Sundararaman

Modern manufacturing industries are striving to improve the machining accuracy and productivity to reduce the rejection rate and unit cost of the machined parts. The properly designed fixture layout enables the designer to minimize the vibration so that the requisite machining accuracy can be achieved. During machining, especially in end milling, the intermittent engagement of multitooth cutter induces vibration on the workpiece. When the excitation frequency of multitooth cutter coincides with any one of the natural frequencies of the fixtured workpiece, it leads to the condition of resonance. The vibration increases under these circumstances, which degrades the machining accuracy and surface finish of the machined workpiece. Hence, the issues related to the design of fixture layout are to be addressed by recognizing the dynamic behavior of the fixture–workpiece system. In this research paper, finite element method is utilized to simulate the end milling operation and to determine the natural frequency of the workpiece. The main focus is to maximize the difference between natural frequency of the fixtured workpiece and excitation frequency of the cutter to minimize the vibration on the workpiece. Two different evolutionary techniques genetic algorithm and particle swarm optimization are employed to maximize the difference between these frequencies by optimizing the machining fixture layout. The performance of genetic algorithm and particle swarm optimization on the fixture layout optimization is compared. The comparison of results concludes that particle swarm optimization is the most appropriate approach than the genetic algorithm in achieving the better results.

Author(s):  
KA Sundararaman ◽  
KP Padmanaban ◽  
M Sabareeswaran

Fixtures are the work-holding devices, widely used in manufacturing, to completely immobilize the workpiece during machining. The position of fixture elements around the workpiece strongly influences the workpiece deformation which in-turn affects the machining accuracy. The workpiece deformation can be minimized by finding the appropriate position for the locators and clamps. Thus, it is necessary to model the complex behavioral relationship that exists in the fixture–workpiece system. In this research paper, response surface methodology is used to model the relationship between position of locators and clamps and maximum deformation of the workpiece during end-milling, and then the developed model has been optimized by genetic algorithm and particle swarm optimization. As the predictive model is being developed by response surface methodology, a huge reduction in computational complexity and time is achieved during the optimization of machining fixture layout. Also, it is evident that the approach which integrates response surface methodology and particle swam optimization produces better results.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hamza Yapıcı ◽  
Nurettin Çetinkaya

The power loss in electrical power systems is an important issue. Many techniques are used to reduce active power losses in a power system where the controlling of reactive power is one of the methods for decreasing the losses in any power system. In this paper, an improved particle swarm optimization algorithm using eagle strategy (ESPSO) is proposed for solving reactive power optimization problem to minimize the power losses. All simulations and numerical analysis have been performed on IEEE 30-bus power system, IEEE 118-bus power system, and a real power distribution subsystem. Moreover, the proposed method is tested on some benchmark functions. Results obtained in this study are compared with commonly used algorithms: particle swarm optimization (PSO) algorithm, genetic algorithm (GA), artificial bee colony (ABC) algorithm, firefly algorithm (FA), differential evolution (DE), and hybrid genetic algorithm with particle swarm optimization (hGAPSO). Results obtained in all simulations and analysis show that the proposed method is superior and more effective compared to the other methods.


2014 ◽  
Vol 4 (1) ◽  
pp. 48 ◽  
Author(s):  
Abdorrahman Haeri ◽  
Kamran Rezaie ◽  
Seyed Morteza Hatefi

In recent years, integration between companies, suppliers or organizational departments attracted much attention. Decision making about integration encounters with major concerns. One of these concerns is which units should be integrated and what is the effect of integration on performance measures. In this paper the problem of decision making unit (DMU) integration is considered. It is tried to integrate DMUs so that the considered criteria are satisfied. In this research two criteria are considered that are mean of efficiencies of DMUs and the difference between DMUs that have largest and smallest efficiencies. For this purpose multi objective particle swarm optimization (MOPSO) is applied. A case with 17 DMUs is considered. The results show that integration has increased both considered criteria effectively.  Additionally this approach can presents different alternatives for decision maker (DM) that enables DM to select the final decision for integration.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
An Liu ◽  
Erwie Zahara ◽  
Ming-Ta Yang

Ordinary differential equations usefully describe the behavior of a wide range of dynamic physical systems. The particle swarm optimization (PSO) method has been considered an effective tool for solving the engineering optimization problems for ordinary differential equations. This paper proposes a modified hybrid Nelder-Mead simplex search and particle swarm optimization (M-NM-PSO) method for solving parameter estimation problems. The M-NM-PSO method improves the efficiency of the PSO method and the conventional NM-PSO method by rapid convergence and better objective function value. Studies are made for three well-known cases, and the solutions of the M-NM-PSO method are compared with those by other methods published in the literature. The results demonstrate that the proposed M-NM-PSO method yields better estimation results than those obtained by the genetic algorithm, the modified genetic algorithm (real-coded GA (RCGA)), the conventional particle swarm optimization (PSO) method, and the conventional NM-PSO method.


Sign in / Sign up

Export Citation Format

Share Document