Effects of misalignment and crowning on contact characteristics of crown gear coupling

Author(s):  
Yabin Guan ◽  
Zongde Fang ◽  
Xiaohui Yang ◽  
Guoding Chen

Although crown gear couplings are widely used in rotating machinery, very little is known about their contact behavior and load distribution characteristics. In this study, the manufacturing methods are presented for crown gear coupling. Complete geometrical mathematical models from tools to crown gear coupling are proposed based on the theories of differential geometry and gear mesh. Then, a high-fidelity finite element model verified by tooth contact analysis under light load is employed to investigate load distribution along the crown gear coupling interfaces. The effects of meshing position, torque, and angular misalignment are investigated on load distributions along with crowning amount depending on the displacement circle radius. Finally, it is observed that when the contact position is 0.2 times the width of the tooth, the radius of the displacement circle is the optimal result for the performance of the crown gear coupling.

2014 ◽  
Vol 6 ◽  
pp. 248362
Author(s):  
Dong Guo ◽  
Guohua Sun

The axle whine noise will eventually affect the vehicle noise performance. In this study, a systematic modeling approach is developed to analyze the axle whine problem by considering the hypoid gear mesh from the tooth contact process as well as the system dynamics effect with gear design parameters and shaft-bearing-housing system taken into account. Moreover, the tuning of the dominant air-borne path is modeled analytically by using the sound transmission loss idea. First, gear tooth load distribution results are obtained in a 3-dimensional loaded tooth contact analysis program. Then mesh parameters are synthesized and applied to a linear multibody gear dynamic model to obtain dynamic mesh and bearing responses. The bearing responses are used as the excitation force to a housing finite element model. Finally, the vibroacoustic analysis of the axle is performed using the boundary element method; sound pressure responses in the axle surface are then simulated. Transmission losses of different panel partitions are included in the final stage to guide the tuning of air-borne paths to reduce the radiated axle whine noise. The proposed approach gives a more in-depth understanding of the axle whine generation and therefore can further facilitate the system design and trouble-shooting.


Author(s):  
Y. Zhang ◽  
Z. Fang

Abstract This paper presents an approach for the analysis of tooth contact and load distribution of helical gears with crossed axis. The approach is based on a tooth contact model that accommodates the influence of tooth profile modifications, gear manufacturing errors and tooth surface deformation on gear mesh quality. In the approach, the tooth contact load is assumed to be distributed along the tooth surface line that coincides with the relative principal direction of the contacting tooth surfaces. The model in this paper provides a quantitative analysis on gear transmission errors, contact patterns and the load distribution of helical gears with crossed axes when the tooth surfaces are deformed under load. As a numerical example, the contact of a pair of helical gears with a small crossing angle is analyzed by the computer program that implements the approach.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Yong Hu ◽  
David Talbot ◽  
Ahmet Kahraman

In order to accurately predict ring gear deformations and to investigate the effects of ring gear flexibility on quasi-static behaviors of planetary gear sets, a complete load distribution model of planetary gear sets having flexible ring gears will be formulated here based on the baseline model proposed by the same authors (Hu, Y., Talbot, D., and Kahraman, A., 2018, “A Load Distribution Model for Planetary Gear Sets,” ASME J. Mech. Des., 140(5), p. 053302). Direct comparisons to published experiments are provided to assess the accuracy of the proposed load distribution methodology. Example analyses with flexible ring gear rims are performed indicating that ring gear flexibility could influence gear mesh-level and planetary gear set system-level behaviors. Influence of spline supporting a ring gear is also investigated revealing that positions of planet branches with respect to external splines could influence ring deflections and resultant gear mesh load distributions.


Author(s):  
Ioannis T. Georgiou

In this work, the nonlinear coupled dynamics of a sandwich structure with hexagonal honeycomb core are characterized in terms of Proper Orthogonal Decomposition modes. A high fidelity nonlinear finite element model is derived to describe geometric nonlinearity and displacement and rotation fields that govern the coupled dynamics. Contrary to equivalent continuum models used to predict vibration properties of lattice and sandwich structures, a high fidelity finite element model allows for a quite detailed description of the distributed complicated geometric nonlinearity of the core. It was found that the free dynamics excited by a blast load and the forced dynamics excited by a harmonic force posses POD modes which are localized in space and time. The processing of the simulated dynamics by the Time Discrete Proper Transform forms a means to study the nonlinear coupled dynamics of sandwich structures in the context of nonlinear normal modes of vibration and reduced order models.


2021 ◽  
Vol 15 (5) ◽  
pp. JAMDSM0062-JAMDSM0062
Author(s):  
Yabin GUAN ◽  
Jigang CHEN ◽  
Hao CHEN ◽  
Shengyang HU ◽  
Xuan LIU

Author(s):  
J. S. Rao ◽  
J. R. Chang ◽  
T. N. Shiau

Abstract A general finite element model is presented for determining the coupled bending-torsion natural frequencies and mode shapes of geared rotors. Uncoupled bending and torsion frequencies are obtained for examples available in literature and the present program is verified against these. The effect of the gear box is considered to determine the coupled frequencies. Parameters studied include the pressure angle, gear mesh stiffness, and bearing properties. The gear pressure angle is shown to have no effect on the natural frequencies of rotors supported on isotropic bearing supports. Several case studies with bending-torsion coupling are considered and the results obtained are compared with those available in literature. The results of a general rotor system with 8lodes are also presented.


2020 ◽  
Vol 10 (12) ◽  
pp. 4403
Author(s):  
Bing Yuan ◽  
Geng Liu ◽  
Lan Liu

As one of the long period gear errors, the effects of random cumulative pitch deviations on mesh excitations and vibration responses of a helical geared rotor system (HGRS) are investigated. The long-period mesh stiffness (LPMS), static transmission error (STE), as well as composite mesh error (CMS), and load distributions of helical gears are calculated using an enhanced loaded tooth contact analysis (LTCA) model. A dynamic model with multi degrees of freedom (DOF) is employed to predict the vibration responses of HGRS. Mesh excitations and vibration responses analysis of unmodified HGRS are conducted in consideration of random cumulative pitch deviations. The results indicate that random cumulative pitch deviations have significant effects on mesh excitations and vibration responses of HGRS. The curve shapes of STE and CMS become irregular when the random characteristic of cumulative pitch deviations is considered, and the appearance of partial contact loss in some mesh cycles leads to decreased LPMS when load torque is relatively low. Vibration modulation phenomenon can be observed in dynamic responses of HGRS. In relatively light load conditions, the amplitudes of sideband frequencies become larger than that of mesh frequency and its harmonics (MFIHs) because of relatively high contact ratio. The influences of random cumulative pitch deviations on the vibration responses of modified HGRS are also discussed.


2020 ◽  
Vol 10 (14) ◽  
pp. 4859
Author(s):  
Ting Zhang ◽  
Xuan Li ◽  
Yawen Wang ◽  
Lining Sun

The current load distribution model for cycloid drives based on the Hertz contact stiffness typically assumes a two-dimensional planar problem without considering the tooth longitudinal modification effects, which fails to comply with the practical situation. In this paper, this issue is clarified by developing a semi-analytical load distribution model based on a three-dimensional and linear elastic solution. Unloaded tooth contact analysis is introduced to determine the instantaneous mesh information. The tooth compliance model considering tooth contact deformation is established by combining the Boussinesq force–displacement relationships in elastic half-space with an influence coefficient method. With this, the loads, contact patterns, and loaded transmission error are calculated by enforcing the compatibility and equilibrium conditions. Comparisons to predictions made with the assumption of Hertz contact stiffness are presented to demonstrate the effectiveness of the proposed model, which shows good agreement. At the end, the effect of tooth longitudinal modifications on load distributions is investigated along with various loading conditions. This study yields an in-depth understanding of the multi-tooth contact characteristics of cycloid drives and provides an effective tool for extensive parameter sensitivity analysis and design optimization studies.


Sign in / Sign up

Export Citation Format

Share Document