Passive vibration isolation of flexure jointed hexapod: A geometry design method

Author(s):  
Zongyu Zuo ◽  
Jiahao Wang ◽  
Heng Wang ◽  
Qiang Wang

This paper presents the passive vibration isolation problem for a specific kind of Stewart Platform called flexure jointed hexapod (FJH). For purpose of analyzing the relationship between passive vibration isolation and parameters of the FJH, an existing dynamic model of the hexapod is re-cast appropriately to obtain the transfer function matrix from disturbance to generalized coordinates of the payload. Then, the system natural frequencies and the corresponding damping ratios are derived analytically. To guarantee the effective disturbance attenuation and isolation, a lower bound of the disturbance frequency with respect to the geometric parameters of the FJH is identified. Based on the identified sufficient conditions for disturbance isolation, a new design algorithm for geometry structure of the FJH and coefficients of the parallel spring-damping mechanism in struts is proposed. Finally, numerical simulation results are provided to demonstrate effectiveness of the proposed design algorithm.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Shenping Xiao ◽  
Liyan Wang ◽  
Hongbing Zeng ◽  
Lingshuang Kong ◽  
Bin Qin

The robustH∞filtering problem for a class of network-based systems with random sensor delay is investigated. The sensor delay is supposed to be a stochastic variable satisfying Bernoulli binary distribution. Using the Lyapunov function and Wirtinger’s inequality approach, the sufficient conditions are derived to ensure that the filtering error systems are exponentially stable with a prescribedH∞disturbance attenuation level and the filter design method is proposed in terms of linear matrix inequalities. The effectiveness of the proposed method is illustrated by a numerical example.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lin Li ◽  
Yuting Kang

The reliablel2–l∞andH∞control for a class of Lipschitz nonlinear discrete-time singular systems with time delay is investigated via dynamic feedback control. The main goal of this paper is to design a generalized nonlinear controller such that, for possible actuator failures, the closed-loop system is regular, casual, and stable with a givenl2–l∞andH∞disturbance attenuation level being satisfied. Some sufficient conditions are obtained in terms of linear matrix inequalities (LMIs), and the controller design method is also proposed. Finally, a numerical example is included to illustrate the effectiveness of our proposed results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Zhang ◽  
Hamid Reza Karimi ◽  
Zhong Zheng ◽  
Ming Lyu ◽  
Yuming Bo

We deal with the design problem of minimum entropyℋ∞filter in terms of linear matrix inequality (LMI) approach for linear continuous-time systems with a state-space model subject to parameter uncertainty that belongs to a given convex bounded polyhedral domain. Given a stable uncertain linear system, our attention is focused on the design of full-order and reduced-order robust minimum entropyℋ∞filters, which guarantee the filtering error system to be asymptotically stable and are required to minimize the filtering error system entropy (ats0=∞) and to satisfy a prescribedℋ∞disturbance attenuation performance. Sufficient conditions for the existence of desired full-order and reduced-order filters are established in terms of LMIs, respectively, and the corresponding filter synthesis is cast into a convex optimization problem which can be efficiently handled by using standard numerical software. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.


1996 ◽  
Author(s):  
Jeanne Sullivan ◽  
James Gooding ◽  
Michelle Idle ◽  
Alok Das ◽  
Terance Hoffman ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Chun-xia Dou ◽  
Zhi-sheng Duan ◽  
Xing-bei Jia ◽  
Xiao-gang Li ◽  
Jin-zhao Yang ◽  
...  

A delay-dependent robust fuzzy control approach is developed for a class of nonlinear uncertain interconnected time delay large systems in this paper. First, an equivalent T–S fuzzy model is extended in order to accurately represent nonlinear dynamics of the large system. Then, a decentralized state feedback robust controller is proposed to guarantee system stabilization with a prescribedH∞disturbance attenuation level. Furthermore, taking into account the time delays in large system, based on a less conservative delay-dependent Lyapunov function approach combining with linear matrix inequalities (LMI) technique, some sufficient conditions for the existence ofH∞robust controller are presented in terms of LMI dependent on the upper bound of time delays. The upper bound of time-delay and minimizedH∞performance index can be obtained by using convex optimization such that the system can be stabilized and for all time delays whose sizes are not larger than the bound. Finally, the effectiveness of the proposed controller is demonstrated through simulation example.


2021 ◽  
Vol 11 (10) ◽  
pp. 4526
Author(s):  
Lihua Wu ◽  
Yu Huang ◽  
Dequan Li

Tilt vibrations inevitably have negative effects on some precise engineering even after applying horizontal and vertical vibration isolations. It is difficult to adopt a traditional passive vibration isolation (PVI) scheme to realize tilt vibration isolation. In this paper, we present and develop a tilt active vibration isolation (AVI) device using a vertical pendulum (VP) tiltmeter and a piezoelectric transducer (PZT). The potential resolution of the VP is dependent on the mechanical thermal noise in the frequency bandwidth of about 0.0265 nrad, which need not be considered because it is far below the ground tilt of the laboratory. The tilt sensitivity of the device in an open-loop mode, investigated experimentally using a voltage controller, is found to be (1.63±0.11)×105 V/rad. To compensate for the hysteresis nonlinearity of the PZT, we experimentally established the multi-loop mathematical model of hysteresis, and designed a parallel controller consisting of both a hysteresis inverse model predictor and a digital proportional–integral–differential (PID) adjuster. Finally, the response of the device working in close-loop mode to the tilt vibration was tested experimentally, and the tilt AVI device showed a good vibration isolation performance, which can remarkably reduce the tilt vibration, for example, from 6.0131 μrad to below 0.0103 μrad.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1781
Author(s):  
Samer Al Ghour

In this paper, we first define soft u-open sets and soft s-open as two new classes of soft sets on soft bitopological spaces. We show that the class of soft p-open sets lies strictly between these classes, and we give several sufficient conditions for the equivalence between soft p-open sets and each of the soft u-open sets and soft s-open sets, respectively. In addition to these, we introduce the soft u-ω-open, soft p-ω-open, and soft s-ω-open sets as three new classes of soft sets in soft bitopological spaces, which contain soft u-open sets, soft p-open sets, and soft s-open sets, respectively. Via soft u-open sets, we define two notions of Lindelöfeness in SBTSs. We discuss the relationship between these two notions, and we characterize them via other types of soft sets. We define several types of soft local countability in soft bitopological spaces. We discuss relationships between them, and via some of them, we give two results related to the discrete soft topological space. According to our new concepts, the study deals with the correspondence between soft bitopological spaces and their generated bitopological spaces.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
T. Osuna ◽  
O. E. Montano ◽  
Y. Orlov

TheL2-gain analysis is extended towards hybrid mechanical systems, operating under unilateral constraints and admitting both sliding modes and collision phenomena. Sufficient conditions for such a system to be internally asymptotically stable and to possessL2-gain less than ana priorigiven disturbance attenuation level are derived in terms of two independent inequalities which are imposed on continuous-time dynamics and on discrete disturbance factor that occurs at the collision time instants. The former inequality may be viewed as the Hamilton-Jacobi inequality for discontinuous vector fields, and it is separately specified beyond and along sliding modes, which occur in the system between collisions. Thus interpreted, the former inequality should impose the desired integral input-to-state stability (iISS) property on the Filippov dynamics between collisions whereas the latter inequality is invoked to ensure that the impact dynamics (when the state trajectory hits the unilateral constraint) are input-to-state stable (ISS). These inequalities, being coupled together, form the constructive procedure, effectiveness of which is supported by the numerical study made for an impacting double integrator, driven by a sliding mode controller. Desired disturbance attenuation level is shown to satisfactorily be achieved under external disturbances during the collision-free phase and in the presence of uncertainties in the transition phase.


Open Theology ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 430-450
Author(s):  
Kristóf Oltvai

Abstract Karl Barth’s and Jean-Luc Marion’s theories of revelation, though prominent and popular, are often criticized by both theologians and philosophers for effacing the human subject’s epistemic integrity. I argue here that, in fact, both Barth and Marion appeal to revelation in an attempt to respond to a tendency within philosophy to coerce thought. Philosophy, when it claims to be able to access a universal, absolute truth within history, degenerates into ideology. By making conceptually possible some ‚evental’ phenomena that always evade a priori epistemic conditions, Barth’s and Marion’s theories of revelation relativize all philosophical knowledge, rendering any ideological claim to absolute truth impossible. The difference between their two theories, then, lies in how they understand the relationship between philosophy and theology. For Barth, philosophy’s attempts to make itself absolute is a produce of sinful human vanity; its corrective is thus an authentic revealed theology, which Barth articulates in Christian, dogmatic terms. Marion, on the other hand, equipped with Heidegger’s critique of ontotheology, highlights one specific kind of philosophizing—metaphysics—as generative of ideology. To counter metaphysics, Marion draws heavily on Barth’s account of revelation but secularizes it, reinterpreting the ‚event’ as the saturated phenomenon. Revelation’s unpredictability is thus preserved within Marion’s philosophy, but is no longer restricted to the appearing of God. Both understandings of revelation achieve the same epistemological result, however. Reality can never be rendered transparent to thought; within history, all truth is provisional. A concept of revelation drawn originally from Christian theology thus, counterintuitively, is what secures philosophy’s right to challenge and critique the pre-given, a hermeneutic freedom I suggest is the meaning of sola scriptura.


Sign in / Sign up

Export Citation Format

Share Document