Optimization and synthesis of a cam-linkage mechanism with a swing follower with variable pivot

Author(s):  
Liangwen Wang ◽  
Shizhao Zhang ◽  
Caidong Wang ◽  
Ruolan Wang ◽  
Huadong Zheng ◽  
...  

In this paper, a cam-linkage mechanism with a swing follower with variable pivot has been studied. In this mechanism, the pivot of the swing follower is installed on a slider with an adjustable track direction, the follower performs a complex planar motion, and the motion range of the output angle can be adjusted according to the output requirements. In order to synthesize this mechanism, firstly, the relevant model is established and the basic structural parameters are optimized by considering the assembly conditions and the pressure angle under the limit position of the movement track of the follower mounting slider. Subsequently, the inverse method and the envelope theory are employed to derive the cam contour coordinates. Finally, the corresponding follower motion law is selected, the corresponding cam contour coordinates are calculated, and the entire cam contour curve is obtained using spline interpolation. An automatic design system for cam contours is developed. The processes are carried out through design examples and verified through motion simulations and prototype experiment. The present work can enrich the design theory of cam-linkage mechanisms.

2021 ◽  
Author(s):  
Yuki Shimizu ◽  
Shigeo Morimoto ◽  
Masayuki Sanada ◽  
Yukinori Inoue

The optimal design of interior permanent magnet synchronous motors requires a long time because finite element analysis (FEA) is performed repeatedly. To solve this problem, many researchers have used artificial intelligence to construct a prediction model that can replace FEA. However, because the training data are generated by FEA, it takes a very long time to obtain a sufficient amount of data, making it impossible to train a large-scale prediction model. Here, we propose a method for generating a large amount of data from a small number of FEA results using machine learning. An automatic design system with a deep generative model and a convolutional neural network is then constructed. With its sufficient data, the proposed system can handle three topologies and three motor parameters in a wide range of current vector regions. The proposed system was applied to multi-objective optimization design, with the optimization completed in 13-15 seconds.


2015 ◽  
Vol 9 (1) ◽  
pp. 150-156 ◽  
Author(s):  
Chuang Lu ◽  
Bo Wang ◽  
Xiu-Yuan Peng ◽  
Xiao-Lei Hou ◽  
Bing Bai ◽  
...  

Management plan model of agricultural planting information technology research and application of design system for agricultural production and digital has important theoretical and practical significance of agricultural planting. The study concluded, extracted the relevant agricultural planting design theory and technology research based on the show, applying the system analysis principle and mathematical modeling technique, the construction and perfection of the cropping system, ecological regionalization, precision farming and productivity of quantitative analysis of the agricultural planting management knowledge model, by using the technology of software component, with GIS as spatial information management platform, the establishment of the digital system design based on GIS and model plant. The system has realized the design of cropping system of regional cropping information standardization management and different levels of for the realization of crop planting design, quantitative and digital laid the foundation.


2021 ◽  
Author(s):  
Yuki Shimizu ◽  
Shigeo Morimoto ◽  
Masayuki Sanada ◽  
Yukinori Inoue

The optimal design of interior permanent magnet synchronous motors requires a long time because finite element analysis (FEA) is performed repeatedly. To solve this problem, many researchers have used artificial intelligence to construct a prediction model that can replace FEA. However, because the training data are generated by FEA, it takes a very long time to obtain a sufficient amount of data, making it impossible to train a large-scale prediction model. Here, we propose a method for generating a large amount of data from a small number of FEA results using machine learning. An automatic design system with a deep generative model and a convolutional neural network is then constructed. With its sufficient data, the proposed system can handle three topologies and three motor parameters in a wide range of current vector regions. The proposed system was applied to multi-objective optimization design, with the optimization completed in 13-15 seconds.


2021 ◽  
Vol 0 (0) ◽  
pp. 1-11
Author(s):  
ZHU Jun-qing ◽  
◽  
◽  
SHA Wei ◽  
FANG Chao ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Liangwen Wang ◽  
Weiwei Zhang ◽  
Caidong Wang ◽  
Fannian Meng ◽  
Wenliao Du ◽  
...  

In this study, the configuration of a bionic horse robot for equine-assisted therapy is presented. A single-leg system with two degrees of freedom (DOFs) is driven by a cam-linkage mechanism, and it can adjust the span and height of the leg end-point trajectory. After a brief introduction on the quadruped bionic horse robot, the structure and working principle of a single-leg system are discussed in detail. Kinematic analysis of a single-leg system is conducted, and the relationships between the structural parameters and leg trajectory are obtained. On this basis, the pressure angle characteristics of the cam-linkage mechanism are studied, and the leg end-point trajectories of the robot are obtained for several inclination angles controlled by the rotation of the motor for the stride length adjusting. The closed-loop vector method is used for the kinematic analysis, and the motion analysis system is developed in MATLAB software. The motion analysis results are verified by a three-dimensional simulation model developed in Solidworks software. The presented research on the configuration, kinematic modeling, and pressure angle characteristics of the bionic horse robot lays the foundation for subsequent research on the practical application of the proposed bionic horse robot.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Atsuhiko Senba ◽  
Hiroshi Furuya

The concept of self-identification and its feasibility are experimentally investigated. The modal parameters changed by the variable inertia systems, which are controlled by control input, are used to obtain linear equations about unknown structural parameters to overcome the lack of modes in vibration testing. We derive the controllability of the modal parameters as the requested conditions for implementing self-identification using sensitivity analyses of the modal parameters with respect to the control input. Also, a criterion for the self-identification is proposed to measure the controllability. To examine the present method, the self-identification experiments are performed using a flexible cantilevered beam with controllable additional mass attached to the beam. In the experiments, we simulate the self-identification of a flexible structure with variable inertia systems, where lower vibration modes are changed by the variable inertia system adapting to the lack of modes in identification of unknown parameters. It is shown that the identification error of the bending stiffness and mass per unit length of the beam are ranging from about 8% to 12% and 1% to 7%, respectively, and they depend on the mode number because the mode shape estimation from strain sensors and cubic spline interpolation also depends on the mode. Furthermore, the factor for the identification error is discussed in detail through numerical analysis, and the results show the clear relationship between the present criterion and the identification accuracy in experiments.


2014 ◽  
Vol 488-489 ◽  
pp. 79-82
Author(s):  
Bo Sun ◽  
Long Chen

The unfolding is the first step for the manufacturing of the sheet-metal part, which plays a major role for the accuracy and quality of the final product. Unfortunately, the inefficiency of the traditional drawing-based method made the process boring and sometime confusing. The CAD method made benefit for the designer. By means of the 3D modeling kernel and the mathematic model of unfolding process, the automatic design system of sheet-metal part was developed, in which the models are parametric and in 3D environment.


Sign in / Sign up

Export Citation Format

Share Document