Effect of pulse injection on film cooling performance: Experimental and numerical investigation

Author(s):  
Seyyed Mehdi Hosseini Baghdad Abadi ◽  
Saadat Zirak ◽  
Mehran Rajabi Zargarabad

In this paper, the influence of pulsating air on film cooling of a flat plate at different frequencies and blowing ratios are experimentally and numerically investigated. Square wave pulsed flow is generated at four frequencies of 2, 10, 50, and 100 Hz corresponding to Strouhal numbers of 0.00254, 0.0127, 0.0636, and 0.1271, respectively, and at five blowing ratios of 0.5, 1, 1.5, 2.4, and 3. Reynolds-averaged Navier−Stokes equations are resolved to analyze the coolant film effectiveness based on parameters set in the experiments. The [Formula: see text] model used for turbulent modeling. The obtained results showed that the performance of pulsating cooling decreases with increasing of blowing ratio at the same flow as steady state conditions. The difference between numerical and experimental values for the centerline film effectiveness shows good adaptation at the distances of the injection hole downstream. The lift-off of the local jet increased under pulsation. Increasing the pulse frequency increases the overall efficiency of film cooling. The maximum mean centerline pulsating film cooling effectiveness is obtained at Strouhal number of 0.0636 and a blowing ratio of 0.5, and the minimum value is for Strouhal number of 0.00254 and a blowing ratio of 3. For pulsed flow, the maximum discrepancy of the mean centerline film effectiveness between experimental and numerical results was 17.82%.

Author(s):  
Siavash Khajehhasani ◽  
Bassam Jubran

A numerical investigation of the film cooling performance from novel sister shaped single-holes (SSSH) is presented in this paper and the obtained results are compared with a single cylindrical hole, a forward diffused shaped hole, as well as discrete sister holes. Three types of the novel sister shaped single-hole schemes namely downstream, upstream and up/downstream SSSH, are designed based on merging the discrete sister holes to the primary hole in order to reduce the jet lift-off effect and increase the lateral spreading of the coolant on the blade surface as well as a reduction in the amount of coolant in comparison with discrete sister holes. The simulations are performed using three-dimensional Reynolds-Averaged Navier Stokes analysis with the realizable k–ε model combined with the standard wall function. The upstream SSSH demonstrates similar film cooling performance to that of the forward diffused shaped hole for the low blowing ratio of 0.5. While it performs more efficiently at M = 1, where the centerline and laterally averaged effectiveness results improved by 70% and 17%, respectively. On the other hand, the downstream and up/downstream SSSH schemes show a considerable improvement in film cooling performance in terms of obtaining higher film cooling effectiveness and less jet lift-off effect as compared with the single cylindrical and forward diffused shaped holes for both blowing ratios of M = 0.5 and 1. For example, the laterally averaged effectiveness for the downstream SSSH configuration shows an improvement of approximately 57% and 110% on average as compared to the forward diffused shaped hole for blowing ratios of 0.5 and 1, respectively.


Author(s):  
Pingfan He ◽  
Dragos Licu ◽  
Martha Salcudean ◽  
Ian S. Gartshore

The effect of varying coolant density on film cooling effectiveness for a turbine blade-model was numerically investigated and compared with experimental data. This model had a semi-circular leading edge with four rows of laterally-inclined film cooling orifices positioned symmetrically about the stagnation line. A curvilinear coordinate-based CFD code was developed and used for the numerical investigation. The code used a domain segmentation strategy in conjunction with general curvilinear grids to model the complex blade configuration. A multigrid method was used to accelerate the convergence rate. The time-averaged, variable-density, Navier-Stokes equations together with the energy or scalar equation were solved. Turbulence closure was attained by the standard k–ε model with a near-wall k model. Either air or CO2 was used as coolant in three cases of injection through single rows and alternatively staggered double raws of holes. Two different blowing rates were investigated in each case and compared with experimental data. The experimental results were obtained using a wind tunnel model, and the mass/heat analogy was used to determine the film cooling effectiveness. The higher density of the carbon dioxide coolant (approximately 1.5 times the density of air) in the isothermal mass injection experiments, was used to simulate the effects of injection of a colder air in the corresponding adiabatic heat transfer situation. Good agreement between calculated and measured film cooling effectiveness was found for low blowing ratio M ≤ 0.5 and the effect of density was not significant. At higher blowing ratio M > 1 the calculations consistently overpredict the measured values of film cooling effectiveness.


Author(s):  
Joshua L. Camp ◽  
Andrew Duggleby

There are many gas turbine flows that are subsonic but still at speeds where gas compresses and the assumptions made in a low-Mach formulation are inadequate. In particular, a low-Mach spectral element solver, NEK5000, was used to perform a LES study of a film cooling hole at a blowing ratio and density ratio of 1.0 and 1.5, respectively. Due to a lack of real compressibility effects in the formulation, the simulation over-predicted the velocity in the hole, leading to large coolant lift-off and poorer film cooling performance than expected. Recently, the capabilities of NEK5000 have been extended to solve the compressible Navier-Stokes equations using the discontinuous Galerkin spectral element method (DGSEM). In this paper, details of the new algorithm are given, and results of the new simulation show vast improvements over the low-Mach code and compare well to previous experimental results.


Author(s):  
S. Baheri ◽  
B. A. Jubran ◽  
S. P. Alavi Tabrizi

This paper reports a computational investigation on the effects of mainstream turbulence intensity on film cooling effectiveness from trenched holes over a symmetrical blade. Computational solutions of the steady, Reynolds-Averaged Navier-Stokes equations are obtained using a finite volume method with k – ε Turbulence model. Whenever possible, computational results are compared with experimental ones from data found in the open literature. Computational results are presented for a row of 25 deg forward-diffused film hole within transverse slot injected at 35 deg to AGTB symmetrical blade. Four blowing ratios, M = 0.3, 0.5, 0.9 and 1.3 are studied together with four mainstream turbulence intensities of Tu = 0.5%, 2%, 4% and 10%. Results indicate that the trenched shaped holes tend to give better film cooling effectiveness than that obtained from discrete shaped holes for all blowing ratios and all turbulence intensities. The trenching of shaped holes has changed the optimum blowing ratio and also the location of re-attachment of separated jet at high blowing ratios. Moreover, it has been found that the effect of mainstream turbulence intensity for trenched shaped holes is similar to that obtained for discrete shaped holes with the exception that the sensitivity of film cooling effectiveness to turbulence intensity has decreased for trenched shaped holes.


Author(s):  
Zhonghao Tang ◽  
Gongnan Xie ◽  
Honglin Li ◽  
Wenjing Gao ◽  
Chunlong Tan ◽  
...  

Abstract Film cooling performance of the cylindrical film holes and the bifurcated film holes on the leading edge model of the turbine blade are investigated in this paper. The suitability of different turbulence models to predict local and average film cooling effectiveness is validated by comparing with available experimental results. Three rows of holes are arranged in a semi-cylindrical model to simulate the leading edge of the turbine blade. Four different film cooling structures (including a cylindrical film holes and other three different bifurcated film holes) and four different blowing ratios are studied in detail. The results show that the film jets lift off gradually in the leading edge area as the blowing ratio increases. And the trajectory of the film jets gradually deviate from the mainstream direction to the spanwise direction. The cylindrical film holes and vertical bifurcated film holes have better film cooling effectiveness at low blowing ratio while the other two transverse bifurcated film holes have better film cooling effectiveness at high blowing ratio. And the film cooling effectiveness of the transverse bifurcated film holes increase with the increasing the blowing ratio. Additionally, the advantage of transverse bifurcated holes in film cooling effectiveness is more obvious in the downstream region relative to the cylindrical holes. The Area-Average film cooling effectiveness of transverse bifurcated film holes is 38% higher than that of cylindrical holes when blowing ratio is 2.


Author(s):  
A. C. Smith ◽  
J. H. Hatchett ◽  
A. C. Nix ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

An experimental and numerical investigation was conducted to determine the film cooling effectiveness of a normal slot and angled slot under realistic engine Mach number conditions. Freestream Mach numbers of 0.65 and 1.3 were tested. For the normal slot, hot gas ingestion into the slot was observed at low blowing ratios (M < 0.25). At high blowing ratios (M > 0.6) the cooling film was observed to “lift off” from the surface. For the 30° angled slot, the data was found to collapse using the blowing ratio as a scaling parameter. Results from the current experiment were compared with the subsonic data previously published. For the angle slot, at supersonic freestream Mach number, the current experiment shows that at the same x/Ms, the film-cooling effectiveness increases by as much as 25% as compared to the subsonic case. The results of the experiment also show that at the same x/Ms, the film cooling effectiveness of the angle slot is considerably higher than the normal slot, at both subsonic and supersonic Mach numbers. The flow physics for the slot tests considered here are also described with computational fluid dynamic (CFD) simulations in the subsonic and supersonic regimes.


Author(s):  
Taha Rezzag ◽  
Bassam A. Jubran

Abstract The present study numerically evaluates the influence of hole inclination angle with a hole imperfection on film cooling performance. Here, the hole imperfection due to laser percussion drilling is modelled as a half torus. Three hole inclination angles were investigated: 35°, 45° and 55°. Furthermore, every case was evaluated at three blowing ratios: 0.45, 0.90 and 1.25. Each case is compared to a baseline case where the hole imperfection is absent. The results indicate that the hole inclination angle has a strong influence on the film effectiveness performance when a hole imperfection is present. Centerline effectiveness plots reveal a maximum effectiveness deterioration of 89% for a blowing ratio of 0.90 in the vicinity of the hole exit. Dimensionless temperature contours show that the jet produced in the presence of an imperfection is much more compact causing the counter rotating vortex pair to be closer to each other. This enhances the jet to lift off from the plate.


Author(s):  
Frank Muldoon ◽  
Sumanta Acharya

Direct Numerical Simulation (DNS) of a pulsed film cooling jet is presented to examine if pulsations of the coolant jet can enhance film cooling effectiveness. Calculations are performed for a cylindrical jet inclined at 30-degrees. The jet pulsation is defined by the duty cycle (DC) and the Strouhal number (St), both of which are varied in the present study. Calculations are done for a baseline steady blowing ratio of 1.5. With a peak blowing ratio (M) of 1.5, pulsing with a St = 0.32 and DC = 0.5 is shown to reduce jet blow-off and improve centerline and spanwise-averaged effectiveness over the steady M = 1.5 case.


1999 ◽  
Vol 121 (4) ◽  
pp. 792-803 ◽  
Author(s):  
M. K. Berthe ◽  
S. V. Patankar

Computations have been conducted on curved, three-dimensional discrete-hole film cooling geometries that included the mainflow, injection hole, and supply plenum regions. Both convex and concave film cooling geometries were studied. The effects of several film cooling parameters have been investigated, including the effects of blowing ratio, injection angle, hole length, hole spacing, and hole staggering. The blowing ratio was varied from 0.5 to 1.5, the injection angle from 35 to 65 deg, the hole length from 1.75D to 6.0D, and the hole spacing from 2D to 3D. The staggered-hole arrangement considered included two rows. The computations were performed by solving the fully elliptic, three-dimensional Navier–Stokes equations over a body-fitted grid. Turbulence closure was achieved using a modified k–ε model in which algebraic relations were used for the turbulent viscosity and the turbulent Prandtl number. The results presented and discussed include plots of adiabatic effectiveness as well as plots of velocity contours and velocity vectors in cross-stream planes. The present study reveals that the blowing ratio, hole spacing, and hole staggering are among the most significant film cooling parameters. Furthermore: (1) The optimum blowing ratios for curved surfaces are higher than those for flat surfaces, (2) a reduction of hole spacing from 3D to 2D resulted in a very significant increase in adiabatic effectiveness, especially on the concave surface, (3) the increase in cooling effectiveness with decreasing hole spacing was found to be due to not only the increased coolant mass per unit area, but also the smaller jet penetration and the weaker counterrotating vortices, (4) for all practical purposes, the hole length was found to be a much less significant film cooling parameter.


Author(s):  
Kyle R. Vinton ◽  
Travis B. Watson ◽  
Lesley M. Wright ◽  
Daniel C. Crites ◽  
Mark C. Morris ◽  
...  

The combined effects of a favorable, mainstream pressure gradient and coolant-to-mainstream density ratio have been investigated. Detailed film cooling effectiveness distributions have been obtained on a flat plate with either cylindrical (θ = 30°) or laidback, fan-shaped holes (θ = 30°, β = γ = 10°) using the pressure sensitive paint (PSP) technique. In a low speed wind tunnel, both non-accelerating and accelerating flows were considered while the density ratio varied from 1–4. In addition, the effect of blowing ratio was considered, with this ratio varying from 0.5 to 1.5. The film produced by the shaped hole outperformed the round hole under the presence of a favorable pressure gradient for all blowing and density ratios. At the lowest blowing ratio, in the absence of freestream acceleration, the round holes outperformed the shaped holes. However, as the blowing ratio increases, the shaped holes prevent lift-off of the coolant and offer enhanced protection. The effectiveness afforded by both the cylindrical and shaped holes, with and without freestream acceleration, increased with density ratio.


Sign in / Sign up

Export Citation Format

Share Document