Effectiveness of Normal and Angled Slot Cooling

Author(s):  
A. C. Smith ◽  
J. H. Hatchett ◽  
A. C. Nix ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

An experimental and numerical investigation was conducted to determine the film cooling effectiveness of a normal slot and angled slot under realistic engine Mach number conditions. Freestream Mach numbers of 0.65 and 1.3 were tested. For the normal slot, hot gas ingestion into the slot was observed at low blowing ratios (M < 0.25). At high blowing ratios (M > 0.6) the cooling film was observed to “lift off” from the surface. For the 30° angled slot, the data was found to collapse using the blowing ratio as a scaling parameter. Results from the current experiment were compared with the subsonic data previously published. For the angle slot, at supersonic freestream Mach number, the current experiment shows that at the same x/Ms, the film-cooling effectiveness increases by as much as 25% as compared to the subsonic case. The results of the experiment also show that at the same x/Ms, the film cooling effectiveness of the angle slot is considerably higher than the normal slot, at both subsonic and supersonic Mach numbers. The flow physics for the slot tests considered here are also described with computational fluid dynamic (CFD) simulations in the subsonic and supersonic regimes.

Author(s):  
Jeswin Joseph ◽  
S. R. Shine

Very high thermal loads are expected in re-entry vehicles traveling at hypersonic Mach numbers due to severe aerodynamic heating. In the present study, numerical investigations are carried out to analyze the use of film cooling technology for a fully reusable and active thermal protection system of the re-entry vehicle. Simulations are done to examine the fundamental flow phenomenon and the performance of blunt body film cooling in hypersonic flows. Simulations are conducted for a blunt -nosed spacecraft flying at Mach numbers varying from 4 to 8 and 40 deg angle of attack. Film cooling holes are provided on the bottom of the blunt-nosed body. Standard values at an altitude of 30 km are used as in flow boundary conditions. The dependency of blowing ratios, stream-wise injection angle and inlet Mach number on the film cooling effectiveness are investigated. It is observed that the film cooling effectiveness reduces with increase in coolant injection angle. The film cooling performance is found to be decreasing with increase in Mach number. The results could provide useful inputs for optimization of an active thermal protection system of re-entry vehicles.


Author(s):  
Zhonghao Tang ◽  
Gongnan Xie ◽  
Honglin Li ◽  
Wenjing Gao ◽  
Chunlong Tan ◽  
...  

Abstract Film cooling performance of the cylindrical film holes and the bifurcated film holes on the leading edge model of the turbine blade are investigated in this paper. The suitability of different turbulence models to predict local and average film cooling effectiveness is validated by comparing with available experimental results. Three rows of holes are arranged in a semi-cylindrical model to simulate the leading edge of the turbine blade. Four different film cooling structures (including a cylindrical film holes and other three different bifurcated film holes) and four different blowing ratios are studied in detail. The results show that the film jets lift off gradually in the leading edge area as the blowing ratio increases. And the trajectory of the film jets gradually deviate from the mainstream direction to the spanwise direction. The cylindrical film holes and vertical bifurcated film holes have better film cooling effectiveness at low blowing ratio while the other two transverse bifurcated film holes have better film cooling effectiveness at high blowing ratio. And the film cooling effectiveness of the transverse bifurcated film holes increase with the increasing the blowing ratio. Additionally, the advantage of transverse bifurcated holes in film cooling effectiveness is more obvious in the downstream region relative to the cylindrical holes. The Area-Average film cooling effectiveness of transverse bifurcated film holes is 38% higher than that of cylindrical holes when blowing ratio is 2.


Author(s):  
Kyle R. Vinton ◽  
Travis B. Watson ◽  
Lesley M. Wright ◽  
Daniel C. Crites ◽  
Mark C. Morris ◽  
...  

The combined effects of a favorable, mainstream pressure gradient and coolant-to-mainstream density ratio have been investigated. Detailed film cooling effectiveness distributions have been obtained on a flat plate with either cylindrical (θ = 30°) or laidback, fan-shaped holes (θ = 30°, β = γ = 10°) using the pressure sensitive paint (PSP) technique. In a low speed wind tunnel, both non-accelerating and accelerating flows were considered while the density ratio varied from 1–4. In addition, the effect of blowing ratio was considered, with this ratio varying from 0.5 to 1.5. The film produced by the shaped hole outperformed the round hole under the presence of a favorable pressure gradient for all blowing and density ratios. At the lowest blowing ratio, in the absence of freestream acceleration, the round holes outperformed the shaped holes. However, as the blowing ratio increases, the shaped holes prevent lift-off of the coolant and offer enhanced protection. The effectiveness afforded by both the cylindrical and shaped holes, with and without freestream acceleration, increased with density ratio.


Author(s):  
Siavash Khajehhasani ◽  
Bassam A. Jubran

The film cooling performance using novel sister shaped single-hole (SSSH) schemes are numerically investigated in the present study. The downstream, upstream and up/downstream SSSH configurations are formed by merging the discrete sister holes to the primary injection hole through a series of specific orientations. The obtained results are compared with a conventional cylindrical hole and a forward diffused shaped hole. The RANS simulations are performed using the realizable k-ε model with the standard wall function. Results are presented for low and high blowing ratios of 0.25 and 1.5, respectively. The film cooling effectiveness is notably increased for the novel shaped holes, particularly at the high blowing ratio of 1.5. Furthermore, a considerable decrease in the jet lift-off has been achieved for the proposed film hole geometries, wherein fully attached flow to the wall surface is observed for the upstream and up/downstream SSSH schemes.


2021 ◽  
Author(s):  
Mohammed A. Gandhi

An experimental study was conducted to investigate the film cooling effectiveness of a few configurations of short injection holes: single row, double row and both of the preceding cases with an upstream ramp placed at two different locations. In order to perform the above study, a wind-tunnel facility was assembled to facilitate in the successful culmination of the experiments. The focus of the study was to determine the cooling provided by the short injection holes at a variety of blowing ratios and whether adding an extra row of holes, upstream of the first row would make a difference. For the second part, a ramp was placed upstream of the single and double row configuration to help improve cooling . All of the experiments were performed in a low speed wind-tunnel with a mainstream velocity of 8 m/s and a turbulence insity of 3.3%. Higher blowing ratios were ineffective in improving film-cooling effectiveness due to jet lift-off. Two rows of holes increased the cooling effectiveness by 200%, when compared to single row configurations at the same blowing ratio without ramps. Upstream ramps provided significant improvement in the near hole region of the injection holes.


2021 ◽  
Author(s):  
Mohammed A. Gandhi

An experimental study was conducted to investigate the film cooling effectiveness of a few configurations of short injection holes: single row, double row and both of the preceding cases with an upstream ramp placed at two different locations. In order to perform the above study, a wind-tunnel facility was assembled to facilitate in the successful culmination of the experiments. The focus of the study was to determine the cooling provided by the short injection holes at a variety of blowing ratios and whether adding an extra row of holes, upstream of the first row would make a difference. For the second part, a ramp was placed upstream of the single and double row configuration to help improve cooling . All of the experiments were performed in a low speed wind-tunnel with a mainstream velocity of 8 m/s and a turbulence insity of 3.3%. Higher blowing ratios were ineffective in improving film-cooling effectiveness due to jet lift-off. Two rows of holes increased the cooling effectiveness by 200%, when compared to single row configurations at the same blowing ratio without ramps. Upstream ramps provided significant improvement in the near hole region of the injection holes.


Author(s):  
Seung Il Baek ◽  
Savas Yavuzkurt

The objective of this study is to understand the effects of flow oscillations in the mainstream and film cooling jets on film cooling at various blowing ratios (0.5, 0.78, 1.0 and 1.5). These oscillations could be caused by the combustion instabilities. They are approximated in sinusoidal form for the current study. The effects of different frequencies (0, 2, 16, 32 Hz) on film cooling are investigated. Simulations are performed using URANS Realizable k-epsilon and LES Smagorinsky-Lilly turbulence models. The results indicate that if the frequencies of the mainstream and the jet flow are increased at a low average blowing ratio of M = 0.5, the adiabatic film cooling effectiveness is decreased and the heat transfer coefficient is increased due to increased disturbance in jet and main flow interaction with increasing frequency. It was observed that when the frequency of the mainstream and the cooling jet flow is increased at M = 0.5, the amplitude of the pressure difference between the mainstream and the plenum is increased resulting in increased amplitude of coolant flow rate oscillations leading to more jet lift off and more disturbance in the main flow and coolant interaction. Consequently, adiabatic film cooling effectiveness is decreased and heat transfer coefficient is increased. If the frequency of the mainstream is increased from 0 Hz to 2, 16, or 32 Hz at M = 0.5, the centerline effectiveness is decreased about 10%, 12%, or 47% and the spanwise-averaged Stanton number ratio is increased about 4%, 5%, or 9% respectively. If the frequencies of the main flow and the jet flow are increased at higher blowing ratios of M = 1.0 and 1.5, adiabatic effectiveness is increased and the spanwise-averaged heat transfer coefficient are decreased. Under steady flow conditions jet lift off is generated for these high blowing ratios. If the frequency of the mainstream and the jet flow is increased, the amplitude of coolant jet flow rate oscillation is increased for the same reason as mentioned above for M = 0.5. This leads to less jet lift off during the cycle resulting in more frequent coolant contact with the wall and consequently increased centerline effectiveness as frequency increases. In addition, the entrainment of hot gases underneath the jet doesn’t lead to higher mixing between the hot mainstream and the coolant and this results in decreased heat transfer coefficient. This is also indicated by the turbulent kinetic energy levels. Some representative results are: when the frequency of the main flow is increased from 0 Hz to 2, 16, or 32 Hz at M = 1.0, the centerline effectiveness is increased about 8%, 19%, or 320%. Also, if the oscillation frequency is increased from 2 Hz to 16, or 32 Hz at M = 1.0, the spanwise-averaged Stanton number ratio is decreased around 2%, to 5% respectively. It seems like the cut off point for low and high blowing ratio behavior of cooling jets is around M = 0.78.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guohua Zhang ◽  
Gongnan Xie ◽  
Bengt Ake Sunden

Purpose In this study, numerical simulations are performed to compare the adiabatic film cooling effectiveness and reveal the difference of film cooling mechanisms of two models with the same geometries and cross-section areas of film holes’ exits at three typical blowing ratios (M = 0.5, 1 and 1.5). The two models are an elliptical model and a cylindrical model with 90° compound angle, respectively. Design/methodology/approach Three different cases are considered in this work and the baseline is the model with a cylindrical film hole. The same boundary conditions and a validated turbulence model (realizable k-ε) are adopted for all cases. Findings The results show that both the elliptical and cylindrical models with 90° compound angle can enhance the film cooling effectiveness compared with the baseline. However, the elliptical model performs well at lower blowing ratios and in the near region at each blowing ratio because of the wider width of the film hole’s exit. The cylindrical model with 90° compound angle provides better film cooling effectiveness in the further downstream area of the film hole at higher blowing ratio because of the less lift-off and better coolant coverage in the larger x/D region along the mainstream direction. Originality/value Overall, it can be concluded that although the elliptical and cylindrical models with 90° compound angle have identical hole exits, the different inlet direction and cross-sectional geometry affect the flow structures when the coolant enters, moves through and exits the hole and finally different film cooling results appear.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Greg Natsui ◽  
Zachary Little ◽  
Jayanta S. Kapat ◽  
Jason E. Dees

Adiabatic film cooling effectiveness measurements are obtained using pressure-sensitive paint (PSP) on a flat film cooled surface. The effects of blowing ratio and hole spacing are investigated for four multirow arrays comprised of eight rows containing 52 holes of 3.8 mm diameter with 20 deg inclination angles and hole length-to-diameter ratio of 11.2. The four arrays investigated have two different hole-to-hole spacings composed of cylindrical and diffuser holes. For the first case, lateral and streamwise pitches are 7.5 times the diameter. For the second case, pitch-to-diameter ratio is 14 in lateral direction and 10 in the streamwise direction. The holes are in a staggered arrangement. Adiabatic effectiveness measurements are taken for a blowing ratio range of 0.3–1.2 and a density ratio of 1.5, with CO2 injected as the coolant. A thorough boundary layer analysis is presented, and data were taken using hotwire anemometry with air injection, with boundary layer, and turbulence measurements taken at multiple locations in order to characterize the boundary layer. Local effectiveness, laterally averaged effectiveness, boundary layer thickness, momentum thickness, turbulence intensity, and turbulence length scale are presented. For the cylindrical holes, at the first row of injection, the film jets are still attached at a blowing ratio of 0.3. By a blowing ratio of 0.5, the jet is observed to lift off, and then impinge back onto the test surface. At a blowing ratio of 1.2, the jets lift off, but reattach much further downstream, spreading the coolant further along the test surface. A thorough uncertainty analysis has been conducted in order to fully understand the presented measurements and any shortcomings of the measurement technique. The maximum uncertainty of effectiveness and blowing ratio is 0.02 counts of effectiveness and 3%, respectively.


Volume 4 ◽  
2004 ◽  
Author(s):  
Mahmood Silieti ◽  
Eduardo Divo ◽  
Alain J. Kassab

We investigate the numerical prediction of film cooling effectiveness of a two-dimensional gas turbine endwall for the cases of conjugate and adiabatic heat transfer models. Further, the consequence of various turbulence models employed in the computation are investigated by considering various turbulence models: ‘RNG’ k-ε model, Realizable k-ε model, Standard k-ω model, ‘SST’ k-ω model, and ‘RSM’ model. The computed flow field and surface temperature profiles along with the film effectiveness for one and two cooling slots at different injection angles and blowing ratio of one are presented. The results show the strong effect of the conjugate heat transfer on the film effectiveness compared to the adiabatic and analytically derived formulae and show that turbulence model used significantly affects the film effectiveness prediction when separation occurs in the film hole and some level of jet lift-off is present.


Sign in / Sign up

Export Citation Format

Share Document