Optimization of control strategy for regenerative braking of an electrified bus equipped with an anti-lock braking system

Author(s):  
J Zhang ◽  
D Kong ◽  
L Chen ◽  
X Chen

This paper mainly focuses on the regenerative braking control of an electrified bus equipped with an anti-lock braking system (ABS). The regenerative braking works simultaneously with a pneumatic ABS, thus liberating the remaining energy of the vehicle while its wheels tend to lock under an extreme brake circumstance. Based on one representative pneumatic ABS strategy and optimum control theory, the optimization for regenerative braking control is proposed, in which the frictional and regenerative brake forces are controlled integrally to obtain maximal available adhesion. The simulation results indicate that brake stability and performance on different roads profit from the optimization. Hardware-in-the-loop (HIL) tests are accomplished on the pneumatic braking system of an electrified bus. HIL tests validate the results of simulation and guarantee the advantage and reliability of the optimization. The adaptability of optimization to hardware and software of the brake controller is also ensured. The field in which further research could be carried out is proposed.

2011 ◽  
Vol 219-220 ◽  
pp. 1161-1164
Author(s):  
Jing Ming Zhang ◽  
Wei Nan Du ◽  
Xiu Hu Wang

In order to improve hybrid electric vehicle’s energy efficiency, this paper did a research on the regenerative braking system of HEV. In this paper we proposed a new parallel regenerative braking control strategy for HEV and analyzed its characteristics in details. Based on theoretical analysis, we developed a parallel regenerative braking controller for a certain HEV, and built hardware-in-the-loop simulation system to test the controller’s performance. We chose the UDDS driving condition for simulation, and the result shows that the regenerative braking controller we developed is effective and reliable. The controller fulfills the parallel regenerative braking control strategy and distributes the braking force accurately. The energy recovery efficiency reaches 16.7%, which significantly improves the vehicle’s energy efficiency.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guodong Yin ◽  
XianJian Jin

A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC) for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC), and the motor speed, a fuzzy logic control strategy (FLC) is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.


2014 ◽  
Vol 701-702 ◽  
pp. 733-738
Author(s):  
Chen Lu Kong ◽  
Mao Song Wan ◽  
Ning Chen ◽  
Li Ya Lv ◽  
Bing Lin Li

This paper mainly discusses the dynamic distribution of regenerative braking system and conventional friction braking system of EV.In order to meet the requirements of vehicle braking stability and recycle the braking energy whenever possible, the paper proposes a control strategy which based on ECE regulation and I curve.Then the proposed control strategy is embedded into the simulation software ADVISOR.The result shows that the control strategy of regenerative braking the paper presented is better than ADVISOR’s own on braking energy recovery, and is especially suitable for frequent braking city conditions.


2011 ◽  
Vol 219-220 ◽  
pp. 1170-1173 ◽  
Author(s):  
Jing Ming Zhang ◽  
Shuang Shuang Cui ◽  
You Cun Ren

In order to recycle regenerative braking energy, we built the PHEV regenerative braking test platform with model design concept, based on the parallel hybrid structure. We proposed a regenerative braking control strategy under parallel braking force distribution, and established the mathematical models for main elements of the platform. In order to confirm the performance and the operational reliability of the platform, simulation models of the regenerative braking system were built in MATLAB/Simulink by combining the test data with mathematic models. We chose universal NEDC drive cycles for simulation, and the results indicated that the regenerative braking energy was effectively recycled. The structure and control strategy of regenerative braking test platform was proved to be rational.


2011 ◽  
Vol 148-149 ◽  
pp. 1231-1235
Author(s):  
Ji Shun Liu ◽  
Jun Li ◽  
Yong Sheng Zhang ◽  
Liang Chu ◽  
Liang Yao

As one of the key technologies of Hybrid Electronic Bus, regenerative braking technology can recover energy without changing the traditional bus braking habit. This is of vital importance in the research of regenerative braking system. Because the braking force distribution relationship between the front and rear axle of the vehicle has a remarkable influence in the braking stability,especially adding the regenerative braking force, the influence is even larger. So the anti-lock braking control strategy for the hybrid electronic vehicle is updated in this paper according to the condition of regenerative braking. The anti-lock braking control and regenerative braking control were integrated in one ECU (Electronic Control Unit) of braking control system, collecting signals of wheel rotate speed, vehicle speed, SOC and brake pedal position by CAN bus. And the output control commands are sent to the execution unit of anti-lock braking system and regenerative braking system. The effectiveness of energy regeneration and the braking stability of this strategy are tested on the off-line simulation platform.


Author(s):  
Dongsheng Sun ◽  
Junzhi Zhang ◽  
Chengkun He ◽  
Jinheng Han

The traditional regenerative braking control strategy usually uses the torque control mode and does not perform closed-loop control on the charging current, when the vehicle needs to be charged with a small current, the regenerative braking system cannot work effectively. The dual-mode regenerative braking control strategy proposed in this paper unifies the closed-loop control of regenerative current and the closed-loop control of regenerative torque. Especially when the battery is in a state of high charge or the temperature of the battery is too high or too low, this strategy can ensure charging safety, regeneration efficiency, and ride comfort. In the current closed-loop control mode, this proposal uses the ADRC controller to dynamically adjust the motor torque to achieve the purpose of accurately controlling the regenerative current. This method does not need to change the original vector control frame of the motor, which is convenient for engineering applications. The designed regenerative control strategy is verified through typical braking simulation. Bench tests are carried out and the results validate the feasibility and effectiveness of the designed strategy. Based on the realization of the safety of charging and the vehicle ride comfort, the proposed regenerative braking control strategy can achieve higher regeneration efficiency under the dynamical limitation of battery charging current, which further expands the operating range of the regenerative braking system.


2012 ◽  
Vol 605-607 ◽  
pp. 384-387
Author(s):  
Feng Wang ◽  
Yong Hai Wu

A regenerative braking control strategy and the braking force distribution are putted forward based on the basic theory of automotive brake. The model of vehicle regenerative braking system and simulation under urban driving cycles are carried out taking a certain type of hybrid car as the research object. The simulation results show that, in circulation conditions of ECE + EUDC drive, the regenerative braking control strategy that this paper puts forward can ensure the reasonable distribution of vehicle braking force and realize the energy recovery of 15.7%.


2012 ◽  
Vol 184-185 ◽  
pp. 1633-1636 ◽  
Author(s):  
Fei Teng ◽  
Jian Gang Lv ◽  
Yao Sun ◽  
Shao Yan Guo

On the basis of hydrostatic and hydraulic auxiliary braking system for tracked vehicle, the hydraulic pump efficiency was analyzed and discussed. And the model according to the performance analysis was set up, and the optimal working line in which the hydraulic pump working at the highest efficiency level was obtained. And an energy regenerative braking control strategy was proposed which can lead to the optimal matching of hydraulic coupler, hydraulic pump/motor. The computing results show that the hydraulic pump/motor can achieve efficient operation, and the energy regeneration efficiency of braking was improved obviously with the regenerative braking control strategy under the safe braking condition.


2011 ◽  
Vol 383-390 ◽  
pp. 5729-5737
Author(s):  
Jiang Hong ◽  
De Wang Zhang ◽  
Guang Pin Wang ◽  
Ni Sui

The pure electric vehicles (PEV) research is mainly focus on regenerative braking. How to improve the efficiency of battery power utilization and increase vehicles’ driving range is a crucial problem. Based on the analysis of braking feeling, super capacitor characteristics and the efficiency of regenerative braking energy recovery, the control strategy of regenerative braking system is firstly established, which has two objective functions. One is to control the regenerative braking force. The other is to improve the recovery efficiency of regenerative braking energy. Then, the main operating mode of regenerative braking system is presented. On this basis, regenerative braking controller that is based on DC-DC controller is designed and implemented in simulink software. The results show that the regenerative braking control strategy can effectively control the regenerative braking force during braking and increase driving range of electric vehicles


2013 ◽  
Vol 339 ◽  
pp. 183-189
Author(s):  
Jun Zhi Zhang ◽  
Hui Zhou ◽  
Cheng Lin ◽  
Peng Liu

Regarding the centralized driving electric bus as the research object, the influence of Regenerative braking for vehicle braking performance is analyzed, and the original brake system was optimized, a braking control strategy, which does not reduce the vehicle braking safety and performance on the conditions of recovering braking energy as much as possible.


Sign in / Sign up

Export Citation Format

Share Document