An experimental comparison of the pedestrian safety performances of a spring actuator and a pyrotechnic actuator for deploying an active hood lift system

Author(s):  
Tae-Hoon Lee ◽  
Gun-Ha Yoon ◽  
Je-Won Kang ◽  
Seung-Bok Choi

This research experimentally investigates the pedestrian safety performance of an active hood lift system of a passenger vehicle by adopting two different actuators: a spring actuator and a pyrotechnic actuator (gunpowder). After briefly introducing the working principle of the active hood lift system with the two different actuators, experiments to measure the deployment time of the system are carried out to evaluate the pedestrian safety. Subsequently, headform impact tests on the hood are performed to generate the impact force, and hence the mitigation of pedestrian injuries is investigated for the two different actuators. By comparing the measured performances obtained from both actuators, it is shown that the pyrotechnic actuator can provide a faster deployment system time. It is also identified that the spring actuator can provide a better safety performance for protecting adult pedestrians, whereas the safety performance of the pyrotechnic actuator is relatively low. Consequently, the pyrotechnic actuator is redesigned and manufactured to improve its safety performance and tested again. Then, it is shown that the modified pyrotechnic actuator can provide a better protection effect for an adult pedestrian than the spring actuator can.

Robotics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 14 ◽  
Author(s):  
Juan Sandoval ◽  
Med Amine Laribi ◽  
Saïd Zeghloul ◽  
Marc Arsicault ◽  
Jean-Michel Guilhem

This paper deals with a collaborative robot, i.e., cobot, coupled with a new prismatic compliant joint (PCJ) at its end-effector. The proposed collaborative solution is intended for Doppler sonography to prevent musculoskeletal disorders issues. On one hand, the Doppler sonographer’s postures are investigated based on motion capture use during the arteries examination. This study highlighted that configurations adopted by angiologists lead to the musculoskeletal disorder. On the other hand, the proposed PCJ with variable stiffness gives an intrinsic compliance to the cobot handling the probe. This feature allows preserving the human safety when both human and cobot share a common workspace. The effectiveness of the proposed solution is experimentally validated through a 7-DoF Franka Emika robot virtually coupled with the PCJ, during the execution of a trajectory performed during a Doppler ultrasound exam. The impact force criterion is considered as a safety performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yan Wang ◽  
Xiaoli Shen ◽  
Jinchao Chen ◽  
Zhejiang Chen ◽  
Jing Liu

In order to reduce the local scour before the antiscour device of piers, this paper proposed an improvement on a “V-type” device. That was to say, wing plates were set on the surface of the “V-type” device to enhance the diversion and reduce the local scour. To explore the protection effect of the modified device, the inclination angles of the wing plates were set to three angles, and the scour characteristics around the device were studied through the flume scour test and numerical simulation test. The results showed that the wing plates can reduce the impact force of the diving flow which was at the front end of the protective device. Besides, they could also disturb the flow around both sides of the device and weaken its sediment carrying capacity. Thus, the local scour around the device was effectively reduced. Especially, when the wing plates were 30°, the performance of reducing the local scour was the best.


2019 ◽  
Vol 7 (2) ◽  
pp. 205-213
Author(s):  
Yong-Doo Kim ◽  
Seung-Jae Lim ◽  
Hyun-Ung Bae ◽  
Kyoung-Ju Kim ◽  
Chin-Ok Lee ◽  
...  
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Tae-Hoon Lee ◽  
Gun-Ha Yoon ◽  
Seung-Bok Choi

This paper investigates the deploying time (or response time) of an active hood lift system (AHLS) of a passenger vehicle activated by gunpowder actuator. In this work, this is accomplished by changing principal design parameters of the latch part mechanism of the hood system. After briefly introducing the working principle of the AHLS operated by the gunpowder actuator, the governing equations of the AHLS are formulated for each different deploying motion. Subsequently, using the governing equations, the response time for deploying the hold lift system is determined by changing several geometric distances such as the distance from the rotational center of the pop-up guide to the point of the latch in the axial and vertical directions. Then, a comparison is made of the total response time to completely deploy the hood lift system with the existing conventional AHLS and proposed AHLS. In addition, the workable driving speed of the proposed AHLS is compared with the conventional one by changing the powder volume of the actuator.


2021 ◽  
Vol 60 (1) ◽  
pp. 145-157
Author(s):  
Yi Luo ◽  
Ke Yuan ◽  
Lumin Shen ◽  
Jiefu Liu

Abstract In this study, a series of in-plane hexagonal honeycombs with different Poisson's ratio induced by topological diversity are studied, considering re-entrant, semi-re-entrant and convex cells, respectively. The crushing strength of honeycomb in terms of Poisson's ratio is firstly presented. In the previous research, we have studied the compression performance of honeycomb with different negative Poisson's ratio. In this study, a comparative study on the local impact resistance of different sandwich panels is conducted by considering a spherical projectile with low to medium impact speed. Some critical criteria (i.e. local indentation profile, global deflection, impact force and energy absorption) are adopted to analyze the impact resistance. Finally, an influential mechanism of Poisson's ratio on the local impact resistance of sandwich panel is studied by considering the variation of core strength and post-impact collapse behavior.


2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Jingchen Hu ◽  
Tianshu Wang

This paper studies the collision problem of a robot manipulator and presents a method to minimize the impact force by pre-impact configuration designing. First, a general dynamic model of a robot manipulator capturing a target is established by spatial operator algebra (SOA) and a simple analytical formula of the impact force is obtained. Compared with former models proposed in literatures, this model has simpler form, wider range of applications, O(n) computation complexity, and the system Jacobian matrix can be provided as a production of the configuration matrix and the joint matrix. Second, this work utilizes the impulse ellipsoid to analyze the influence of the pre-impact configuration and the impact direction on the impact force. To illustrate the inertia message of each body in the joint space, a new concept of inertia quasi-ellipsoid (IQE) is introduced. We find that the impulse ellipsoid is constituted of the inertia ellipsoids of the robot manipulator and the target, while each inertia ellipsoid is composed of a series of inertia quasi-ellipsoids. When all inertia quasi-ellipsoids exhibit maximum (minimum) coupling, the impulse ellipsoid should be the flattest (roundest). Finally, this paper provides the analytical expression of the impulse ellipsoid, and the eigenvalues and eigenvectors are used as measurements to illustrate the size and direction of the impulse ellipsoid. With this measurement, the desired pre-impact configuration and the impact direction with minimum impact force can be easily solved. The validity and efficiency of this method are verified by a PUMA robot and a spatial robot.


2011 ◽  
Vol 378-379 ◽  
pp. 370-373
Author(s):  
Yu Qing Yuan ◽  
Xuan Cang Wang ◽  
Hui Jun Shao

In order to solve the problem of aeolian sand subgrade compaction, we studied the technology of impact compaction, applied it to the engineering practice and analyzed its effect with Rayleigh wave. The technology of impact compaction can combine the compaction of potential energy and kinetic energy and make it easier for the materials to reach their elastic stage. With the combined function of "knead-roll-impact", the impact compaction road roller can compact the soil body and offer 6~10 times impact force and 3~4 times the depth of influence more than the vibratory roller. The impact compaction methods of aeolian sand subgrade were put forward. The comparative field compaction tests between impact and vibratory compaction are carried through, which are detected by Rayleigh wave. The results show that the impact compaction can make the density of the aeolian sand subgrade 2~5% higher than the vibratory compaction, and reach the influence depth of 7 metres. To sum up, the impact compaction can clearly increases the strength and stiffness of aeolian sand subgrade with a dynamic elastic modulus of 202.63MPa.


2016 ◽  
Vol 16 (3) ◽  
pp. 307-322 ◽  
Author(s):  
Hossein Karimi ◽  
Timothy R.B. Taylor ◽  
Paul M. Goodrum ◽  
Cidambi Srinivasan

Purpose This paper aims to quantify the impact of craft worker shortage on construction project safety performance. Design/methodology/approach A database of 50 North American construction projects completed between 2001 and 2014 was compiled by taking information from a research project survey and the Construction Industry Institute Benchmarking and Metrics Database. The t-test and Mann-Whitney test were used to determine whether there was a significant difference in construction project safety performance on projects with craft worker recruiting difficulty. Poisson regression analysis was then used to examine the relationship between craft worker recruiting difficulty and Occupational Safety and Health Administration Total Number of Recordable Incident Cases per 200,000 Actual Direct Work Hours (TRIR) on construction projects. Findings The result showed that the TRIR distribution of a group of projects that reported craft worker recruiting difficulty tended to be higher than the TRIR distribution of a group of projects with no craft worker recruiting difficulty (p-value = 0.004). Moreover, the average TRIR of the projects that reported craft worker recruiting difficulty was more than two times the average TRIR of projects that experienced no craft recruiting difficulty (p-value = 0.035). Furthermore, the Poisson regression analysis demonstrated that there was a positive exponential relationship between craft worker recruiting difficulty and TRIR in construction projects (p-value = 0.004). Research limitations/implications The projects used to construct the database are heavily weighted towards industrial construction. Practical implications There have been significant long-term gains in construction safety within the USA. However, if recent craft shortages continue, the quantitative analyses presented herein indicate a strong possibility that more safety incidents will occur unless the shortages are reversed. Innovative construction means and methods should be developed and adopted to work in a safe manner with a less qualified workforce. Originality/value The Poisson regression model is the first model that quantifiably links project craft worker availability to construction project safety performance.


Sign in / Sign up

Export Citation Format

Share Document