Elastic breakdown via multi-core high frequency discharge for lean-burn ignition

Author(s):  
Xiaoye Han ◽  
Xiao Yu ◽  
Hua Zhu ◽  
Linyan Wang ◽  
Shui Yu ◽  
...  

An advanced ignition technique is developed to achieve multi-event breakdown and multi-site ignition using a single coil for ignition quality improvements. The igniter enables a unique elastic breakdown process embracing a series of high-frequency discharge events at the spark gap. The equivalent electric circuits and current/voltage equations are identified and verified for the first time to explain the working principle that governs such an elastic breakdown process. Benchmarking tests are first performed to compare the elastic breakdown ignition with the conventional and advanced multi-electrode ignition systems. The elastic breakdown and spark events are thereafter analyzed through current and voltage measurements and high-speed imaging techniques. Finally, ignition tests in combustion chambers are performed to examine the effects on the ignition process in comparison with conventional coil-based ignition systems. The experiments show that, the elastic breakdown ignition can distribute multiple high-frequency breakdown events at all electrode pairs of a multi-electrode sparkplug while using only one ignition coil, thereby offering significant cost saving advantage and packaging practicability.

1989 ◽  
Author(s):  
Wang Kuilu ◽  
Lu Ming ◽  
Liu Cunfu ◽  
Kang Dechun

2019 ◽  
Vol 56 (6) ◽  
pp. 521-532
Author(s):  
Daisuke Doi ◽  
Hiroshi Seino ◽  
Shinya Miyahara ◽  
Masayoshi Uno

2013 ◽  
Author(s):  
Wenjing Zhao ◽  
Daniel C. Skaloud ◽  
Sascha Kutz ◽  
Hendrik Rothe ◽  
Cornelius F. Hahlweg

Author(s):  
Brandon Sforzo ◽  
Hoang Dao ◽  
Sheng Wei ◽  
Jerry Seitzman

The effects of jet fuel composition on ignition probability have been studied in a flowfield that is relevant to turbine engine combustors, but also fundamental and conducive to modeling. In the experiments, a spark kernel is ejected from a wall and propagates transversely into a crossflow. The kernel first encounters an air-only stream before transiting into a second, flammable (premixed) stream. The two streams have matched velocities, as verified by hot-wire measurements. The liquid fuels span a range of physical and chemical kinetic properties. To focus on their chemical differences, the fuels are prevaporized in a carrier air flow before being injected into the experimental facility. Ignition probabilities at atmospheric pressure and elevated crossflow temperature were determined from optical measurements of a large number of spark events, and high speed imaging was used to characterize the kernel evolution. Eight fuel blends were tested experimentally; all exhibited increasing ignition probability as equivalence ratio increased, at least up to 1.5. Statistically significant differences between fuels were measured that have some correlation with fuel properties. To elucidate these trends, the forced ignition process was also studied with a reduced order numerical model of an entraining kernel. The simulations suggest ignition is successful if sufficient heat release occurs before entrainment of colder crossflow fluid quenches the exothermic oxidation reactions. As the kernel is initialized in air, it remains lean during the initial entrainment of the fuel-air mixture; thus richer crossflows lead to quicker and higher exothermicity.


2018 ◽  
Author(s):  
Mohammadrasool Morovatiyan ◽  
Martia Shahsavan ◽  
Mengyan Shen ◽  
John Hunter Mack

Lean-burn engines are important due to their ability to reduce emissions, increase fuel efficiency, and mitigate engine knock. In this study, the surface roughness of spark plug electrodes is investigated as a potential avenue to extend the lean flammability limit of natural gas. A nano-/micro-morphology modification is applied on surface of the spark plug electrode to increase its surface roughness. High-speed Z-type Schlieren visualization is used to investigate the effect of the electrode surface roughness on the spark ignition process in a premixed methane-air charge at different lean equivalence ratios. In order to observe the onset of ignition and flame kernel behavior, experiments were conducted in an optically accessible constant volume combustion chamber at ambient pressures and temperatures. The results indicate that the lean flammability limit of spark-ignited methane can be lowered by modulating the surface roughness of the spark plug electrode.


2010 ◽  
Vol 127 (3) ◽  
pp. 1733-1733
Author(s):  
Marshall J. Brown ◽  
C.‐Y. Jack Perng ◽  
Thomas D. Rossing ◽  
Juliette W. Ioup

2021 ◽  
Vol 134 (16) ◽  
Author(s):  
Christoforos Efstathiou ◽  
Viji M. Draviam

ABSTRACT The successful investigation of photosensitive and dynamic biological events, such as those in a proliferating tissue or a dividing cell, requires non-intervening high-speed imaging techniques. Electrically tunable lenses (ETLs) are liquid lenses possessing shape-changing capabilities that enable rapid axial shifts of the focal plane, in turn achieving acquisition speeds within the millisecond regime. These human-eye-inspired liquid lenses can enable fast focusing and have been applied in a variety of cell biology studies. Here, we review the history, opportunities and challenges underpinning the use of cost-effective high-speed ETLs. Although other, more expensive solutions for three-dimensional imaging in the millisecond regime are available, ETLs continue to be a powerful, yet inexpensive, contender for live-cell microscopy.


2007 ◽  
Vol 111 (1115) ◽  
pp. 1-16 ◽  
Author(s):  
T. J. McIntyre ◽  
H. Kleine ◽  
A. F. P. Houwing

Abstract The application of optical imaging techniques to hypersonic facilities is discussed and examples of experimental measurements are provided. Traditional Schlieren and shadowgraph techniques still remain as inexpensive and easy to use flow visualisation techniques. With the advent of faster cameras, these methods are becoming increasingly important for time-resolved high-speed imaging. Interferometry’s quantitative nature is regularly used to obtain density information about hypersonic flows. Recent developments have seen an extension of the types of flows that can be imaged and the measurement of other flow parameters such as ionisation level. Planar laser induced fluorescence has been used to visualise complex flows and to measure such quantities as temperature and velocity. Future directions for optical imaging are discussed.


Author(s):  
W. Meier ◽  
I. Boxx ◽  
C. Arndt ◽  
M. Gamba ◽  
N. Clemens

An experimental arrangement for the investigation of auto-ignition of a pulsed CH4 jet in a coflow of hot exhaust gas from a laminar lean premixed H2/air flame at atmospheric pressure is presented. The ignition events were captured by high-speed imaging of the OH∗ chemiluminescence associated with the igniting flame kernels at a frame rate of 5 kHz. The flow-field characteristics were determined by high-speed particle image velocimetry and Schlieren images. Furthermore, high-speed imaging of laser-induced fluorescence of OH was applied to visualize the exhaust gas flow and the ignition events. Auto-ignition was observed to occur at the periphery of the CH4 jet with high reproducibility in different runs concerning time and location. In each measurement run, several hundred consecutive single shot images were recorded from which sample images are presented. The main goals of the study are the presentation of the experimental arrangement and the high-speed measuring systems and a characterization of the auto-ignition events occurring in this system.


Sign in / Sign up

Export Citation Format

Share Document